A new generation of technology is making it faster, safer, and more cost-effective to identify CUI. Courtesy photo

Corrosion under insulation (CUI) accounts for roughly 60% of pipeline leaks in the U.S. oil and gas sector. Yet many operators still rely on outdated inspection methods that are slow, risky, and economically unsustainable.

This year, widespread budget cuts and layoffs across the sector are forcing refineries to do more with less. Efficiency is no longer a goal; it’s a mandate. The challenge: how to maintain safety and reliability without overextending resources?

Fortunately, a new generation of technologies is gaining traction in the oil and gas industry, offering operators faster, safer, and more cost-effective ways to identify and mitigate CUI.

Hidden cost of corrosion

Corrosion is a pervasive threat, with CUI posing the greatest risk to refinery operations. Insulation conceals damage until it becomes severe, making detection difficult and ultimately leading to failure. NACE International estimates the annual cost of corrosion in the U.S. at $276 billion.

Compounding the issue is aging infrastructure: roughly half of the nation’s 2.6 million miles of pipeline are over 50 years old. Aging infrastructure increases the urgency and the cost of inspections.

So, the question is: Are we at a breaking point or an inflection point? The answer depends largely on how quickly the industry can move beyond inspection methods that no longer match today's operational or economic realities.

Legacy methods such as insulation stripping, scaffolding, and manual NDT are slow, hazardous, and offer incomplete coverage. With maintenance budgets tightening, these methods are no longer viable.

Why traditional inspection falls short

Without question, what worked 50 years ago no longer works today. Traditional inspection methods are slow, siloed, and dangerously incomplete.

Insulation removal:

  • Disruptive and expensive.
  • Labor-intensive and time-consuming, with a high risk of process upsets and insulation damage.
  • Limited coverage. Often targets a small percentage of piping, leaving large areas unchecked.
  • Health risks: Exposes workers to hazardous materials such as asbestos or fiberglass.

Rope access and scaffolding:

  • Safety hazards. Falls from height remain a leading cause of injury.
  • Restricted time and access. Weather, fatigue, and complex layouts limit coverage and effectiveness.
  • High coordination costs. Multiple contractors, complex scheduling, and oversight, which require continuous monitoring, documentation, and compliance assurance across vendors and protocols drive up costs.

Spot checks:

  • Low detection probability. Random sampling often fails to detect localized corrosion.
  • Data gaps. Paper records and inconsistent methods hinder lifecycle asset planning.
  • Reactive, not proactive: Problems are often discovered late after damage has already occurred.

A smarter way forward

While traditional NDT methods for CUI like Pulsed Eddy Current (PEC) and Real-Time Radiography (RTR) remain valuable, the addition of robotic systems, sensors, and AI are transforming CUI inspection.

Robotic systems, sensors, and AI are reshaping how CUI inspections are conducted, reducing reliance on manual labor and enabling broader, data-rich asset visibility for better planning and decision-making.

ARIX Technologies, for example, introduced pipe-climbing robotic systems capable of full-coverage inspections of insulated pipes without the need for insulation removal. Venus, ARIX’s pipe-climbing robot, delivers full 360° CUI data across both vertical and horizontal pipe circuits — without magnets, scaffolding, or insulation removal. It captures high-resolution visuals and Pulsed Eddy Current (PEC) data simultaneously, allowing operators to review inspection video and analyze corrosion insights in one integrated workflow. This streamlines data collection, speeds up analysis, and keeps personnel out of hazardous zones — making inspections faster, safer, and far more actionable.

These integrated technology platforms are driving measurable gains:

  • Autonomous grid scanning: Delivers structured, repeatable coverage across pipe surfaces for greater inspection consistency.
  • Integrated inspection portal: Combines PEC, RTR, and video into a unified 3D visualization, streamlining analysis across inspection teams.
  • Actionable insights: Enables more confident planning and risk forecasting through digital, shareable data—not siloed or static.

Real-world results

Petromax Refining adopted ARIX’s robotic inspection systems to modernize its CUI inspections, and its results were substantial and measurable:

  • Inspection time dropped from nine months to 39 days.
  • Costs were cut by 63% compared to traditional methods.
  • Scaffolding was minimized 99%, reducing hazardous risks and labor demands.
  • Data accuracy improved, supporting more innovative maintenance planning.

Why the time is now

Energy operators face mounting pressure from all sides: aging infrastructure, constrained budgets, rising safety risks, and growing ESG expectations.

In the U.S., downstream operators are increasingly piloting drone and crawler solutions to automate inspection rounds in refineries, tank farms, and pipelines. Over 92% of oil and gas companies report that they are investing in AI or robotic technologies or have plans to invest soon to modernize operations.

The tools are here. The data is here. Smarter inspection is no longer aspirational — it’s operational. The case has been made. Petromax and others are showing what’s possible. Smarter inspection is no longer a leap but a step forward.

---

Tyler Flanagan is director of service & operations at Houston-based ARIX Technologies.


Dianna Liu of ARIX Technologies joins the Houston Innovators Podcast to share her entrepreneurial journey — and why Houston was the right place to start her company. Photo courtesy of ARIX

Pipeline robotics: How this Houston startup is revolutionizing corrosion monitoring

listen now

After working for years in the downstream energy industry where safety and efficiency were top priorities, Dianna Liu thought there was a way technology could make a huge difference.

Despite loving her company and her job, she took a leap of faith to start a robotics company to create technology to more safely and efficiently monitor corrosion in pipelines. ARIX Technologies has developed software and hardware solutions for its customers with pipelines in downstream and beyond.

"Overall, this industry is an industry that really harps on doing things safely, doing things well, and having all the data to make really informed decisions," Liu says on the Houston Innovators Podcast. "Because these are huge companies with huge problems, it takes a lot of time to set up the right systems, adopt new things, and make changes."

But it's an industry Liu knows well, so she founded ARIX in 2017 and created a team of engineers to create the first iteration of the ARIX robot, which was at first made of wood, she says. Now, years later, the much-evolved robot moves up and down the exterior of the pipe, using its technology to scan the interior to evaluate corrosion. The technology works with ARIX's software to provide key data analysis.

With customers across the country and the world, ARIX has a strong foothold in downstream, but has garnered interest from other verticals as well — even working with NASA at one point, Liu says.

"Staying in downstream would be nice and safe for us, but we've been very lucky and have had customers in midstream, upstream, and even outside oil and gas and chemicals," she says. "We've gotten inquiries ranging from cosmetics plants to water or wastewater — essentially anything that's round or a pipe that can corrode, we can help with."

Liu, who goes into detail on the show about how critical establishing a positive company culture has been for ARIX, shares a bit about what it's been like growing her company in Houston.

"Houston being the Energy Capital of the World opens a lot of doors to both customers, investors, and employees in a way that's unparalleled. It is a great place to build a company because of that — you have all this expertise in this city and the surrounding areas that's hard to find elsewhere," she says. "Being such a hub — not only for energy, but in terms transportation — means it's easy for us to get to our customers from around the world."

———

This article originally ran on InnovationMap.

Nearly 20 Houston startups and innovators were named finalists for the 2024 Houston Innovation Awards this week. Photo via Getty Images

Houston energy transition innovators named finalists for annual awards program

best of the rest

The Houston Innovation Awards have named its honorees for its 2024 awards event, and several clean energy innovators have made the cut.

The finalists, which were named on EnergyCapital's sister site InnovationMap this week, were decided by this year's judges after they reviewed over 130 applications. More 50 finalists will be recognized in particular for their achievements across 13 categories, which includes the 2024 Trailblazer Legacy Awards that were announced earlier this month.

All of the honorees will be recognized at the event on November 14 and the winners will be named. Registration is open online.

Representing the energy industry, the startup finalists include:

  • Amperon, an AI platform powering the smart grid of the future, was named a finalist in the Energy Transition Business category.
  • ARIXTechnologies, an integrated robotics and data analytics company that delivers inspection services through its robotics platforms, was named a finalist in the Energy Transition Business and the AI/Data Science Business categories.
  • CLS Wind, a self-erection wind turbine tower system provider for the wind energy industry, was named a finalist in the Minority-Founded Business category.
  • Corrolytics, a technology startup founded to solve microbiologically influenced corrosion problems for industrial assets, was named a finalist in the Minority-Founded Business and People's Choice: Startup of the Year categories.
  • Elementium Materials, a battery technology with liquid electrolyte solutions, was named a finalist in the Energy Transition Business category.
  • Enovate Ai, a provider of business and operational process optimization for decarbonization and energy independence, was named a finalist in the AI/Data Science Business category.
  • FluxWorks, developer and manufacturer of magnetic gears and magnetic gear-integrated motors, was named a finalist in the Deep Tech Business category.
  • Gold H2, a startup that's transforming depleted oil fields into hydrogen-producing assets utilizing existing infrastructure, was named a finalist in the Minority-Founded Business and the Deep Tech Business categories.
  • Hertha Metals, developer of a technology that cost-effectively produces steel with fewer carbon emissions, was named a finalist in the Deep Tech Business category.
  • InnoVentRenewables, a startup with proprietary continuous pyrolysis technology that converts waste tires, plastics, and biomass into valuable fuels and chemicals, was named a finalist in the Energy Transition Business and the People's Choice: Startup of the Year categories.
  • NanoTech Materials, a chemical manufacturer that integrates novel heat-control technology with thermal insulation, fireproofing, and cool roof coatings to drastically improve efficiency and safety, was named a finalist in the Scaleup of the Year category.
  • SageGeosystems, an energy company focused on developing and deploying advanced geothermal technologies to provide reliable power and sustainable energy storage solutions regardless of geography, was named a finalist in the Energy Transition Business category.
  • Square Robot, an advanced robotics company serving the energy industry and beyond by providing submersible robots for storage tank inspections, was named a finalist in the Scaleup of the Year category.
  • Syzygy Plasmonics, a company that's decarbonizing chemical production with a light-powered reactor platform that electrifies the production of hydrogen, syngas, and fuel with reliable, low-cost solutions, was named a finalist in the Scaleup of the Year category.
  • TierraClimate, a software provider that helps grid-scale batteries reduce carbon emissions, was named a finalist in the Energy Transition Business category.
  • Voyager Portal, a software platform that helps commodity traders and manufacturers in the O&G, chemicals, agriculture, mining, and project cargo sectors optimize the voyage management lifecycle, was named a finalist in the AI/Data Science Business category.

In addition to the startup finalists, two energy transition-focused organizations were recognized in the Community Champion Organization category, honoring a corporation, nonprofit, university, or other organization that plays a major role in the Houston innovation community. The two finalists in that category are:

  • Energy Tech Nexus, a new global energy and carbon tech hub focusing on hard tech solutions that provides mentor, accelerator and educational programs for entrepreneurs and underserved communities.
  • Greentown Houston, a climatetech incubator and convener for the energy transition community that provides community engagement and programming in partnership with corporations and other organizations.

Lastly, a few energy transition innovators were honored in the individual categories, including Carlos Estrada, growth partner at First Bight Ventures and head of venture acceleration at BioWell; Juliana Garaizar, founding partner of Energy Tech Nexus; and Neal Dikeman, partner at Energy Transition Ventures.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston startup advances methane tech, sets sights on growth capital

making milestones

Houston-based climatech startup Aquanta Vision achieved key milestones in 2025 for its enhanced methane-detection app and has its focus set on future funding.

Among the achievements was the completion of the National Science Foundation’s Advanced Sensing and Computation for Environmental Decision-making (ASCEND) Engine. The program, based in Colorado and Wyoming, awarded a total of $3 million in grants to support the commercialization of projects that tackle critical resilience challenges, such as water security, wildfire prediction and response, and methane emissions.

Aquanta Vision’s funding went toward commercializing its NETxTEN app, which automates leak detection to improve accuracy, speed and safety. The company estimates that methane leaks cost the U.S. energy industry billions of dollars each year, with 60 percent of leaks going undetected. Additionally, methane leaks account for around 10 percent of natural gas's contribution to climate change, according to MIT’s climate portal.

Throughout the months-long ASCEND program, Aquanta Vision moved from the final stages of testing into full commercial deployment of NETxTEN. The app can instantly identify leaks via its physics-based algorithms and raw video output of optical gas imaging cameras. It does not require companies to purchase new hardware, requires no human intervention and is universally compatible with all optical gas imaging (OGI) cameras. During over 12,000 test runs, 100 percent of leaks were detected by NETxTEN’s system, according to the company.

The app is geared toward end-users in the oil and gas industry who use OGI cameras to perform regular leak detection inspections and emissions monitoring. Aquanta Vision is in the process of acquiring new clients for the app and plans to scale commercialization between now and 2028, Babur Ozden, the company’s founder and CEO, tells Energy Capital.

“In the next 16 months, (our goal is to) gain a number of key customers as major accounts and OEM partners as distribution channels, establish benefits and stickiness of our product and generate growing, recurring revenues for ourselves and our partners,” he says.

The company also received an investment for an undisclosed amount from Marathon Petroleum Corp. late last year. The funding complemented follow-on investments from Ecosphere Ventures and Odyssey Energy Advisors.

Ozden says the funds will go toward the extension of its runway through the end of 2026. It will also help Aquanta Vision grow its team.

Ozden and Marcus Martinez, a product systems engineer, founded Aquanta Vision in 2023 and have been running it as a two-person operation. The company brought on four interns last year, but is looking to add more staff.

Ozden says the company also plans to raise a seed round in 2027 “to catapult us to a rapid growth phase in 2028-29.”

HETI discusses Houston’s energy leadership, from pathways to progress

The View From HETI

In 2024, RMI in collaboration with Mission Possible Partnership (MPP) and the Houston Energy Transition Initiative (HETI) mapped out ambitious scenarios for the region’s decarbonization journey. The report showed that with the right investments and technologies, Houston could achieve meaningful emissions reductions while continuing to power the world. That analysis painted a picture of what could be possible by 2030 and 2050.

Today, the latest HETI progress report shows Houston is not just planning anymore — the region is delivering.

Real results, right now

The numbers tell a compelling story. Since 2017, HETI’s member companies have invested more than $95 billion in low-carbon infrastructure, technologies, and R&D. That’s not a commitment for the future—that’s capital deployed, projects built, and operations transformed.

The results showed industry-wide reductions of 20% in total Scope 1 greenhouse gas emissions and a remarkable 55% decrease in methane emissions from global operations. These aren’t projections—they’re actual reductions happening across refineries, chemical plants, and production facilities throughout the Houston region.

How Houston is leading

What makes Houston’s approach work is its practical, technology-driven focus. Companies across the energy value chain are implementing solutions that work today:

  • Electrifying operations and integrating renewable power
  • Deploying advanced methane detection and elimination technologies
  • Upgrading equipment for greater efficiency
  • Capturing and storing carbon at commercial scale
  • Developing breakthrough technologies from geothermal to advanced nuclear

Take ExxonMobil’s Permian Basin electrification, Shell and Chevron’s lower-carbon Whale project, or BP’s massive Tangguh carbon capture project in Indonesia. These aren’t pilot programs—they’re multi-billion dollar investments demonstrating that decarbonization and energy production go hand in hand.

From scenarios to strategy

The RMI analysis identified three key pathways forward: enabling operational decarbonization, accelerating low-carbon technology scale-up, and creating carbon accounting mechanisms. Houston’s energy leaders have embraced all three.

The momentum is undeniable. Companies are setting ambitious 2030 and 2050 targets with clear roadmaps. New projects are reaching final investment decisions. Innovation ecosystems are flourishing. And critically, this progress is creating jobs and driving economic growth across the region.

Why this matters

Houston isn’t just managing the energy transition—it’s proving what’s possible when you combine world-class engineering expertise, integrated infrastructure, access to capital, and a commitment to both energy security and emissions reduction.

The dual challenge of delivering more energy with less emissions isn’t theoretical in Houston—it’s operational reality. Every ton of CO₂ reduced, every efficiency gain achieved, and every technology deployed demonstrates that we can meet growing global energy demand while making measurable progress on climate goals.

The path forward

The journey from last year’s scenarios to this year’s results shows something crucial: when industry, policymakers, and communities align around practical solutions, transformation accelerates.

Houston’s energy leadership isn’t about choosing between reliable energy and environmental progress, it’s about delivering both. And based on the progress we’re seeing, the momentum is only building.

———

Read the full analysis here. This article originally appeared on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

TotalEnergies to supply solar power to new Google data centers in Texas

power deal

French energy company TotalEnergies, whose U.S. headquarters are in Houston, has signed power purchase agreements to supply 1 gigawatt of solar power for Google data centers in Texas over a 15-year span.

The power will be generated by TotalEnergies’ two solar farms that are being developed in Texas. Construction on the company’s Wichita site (805 megawatt-peak, or MWp) and Mustang Creek site (195 MWp) is scheduled to start in the second quarter of this year.

Marc-Antoine Pignon, U.S. vice president for renewables at TotalEnergies, said in a press release that the 1-gigawatt deal “highlights TotalEnergies’ strategy to deliver tailored renewable energy solutions that support the decarbonization goals of digital players, particularly data centers.”

The deal comes after California-based Clearway, in which TotalEnergies holds a 50 percent stake, secured an agreement to supply 1.2 gigawatts of solar power to Google data centers in Texas and other states.

“Supporting a strong, stable, affordable grid is a top priority as we expand our infrastructure,” said Will Conkling, director of clean energy and power at Google. “Our agreement with TotalEnergies adds necessary new generation to the local system, boosting the amount of affordable and reliable power supply available to serve the entire region.”

TotalEnergies maintains a 10-gigawatt-capacity portfolio of onshore solar, wind and battery storage assets in the U.S., including 5 gigawatts in the territory served by the Electric Reliability Council of Texas (ERCOT).

Other clean energy customers of TotalEnergies include Airbus, Air Liquide, Amazon, LyondellBasell, Merck and Microsoft.