Anwar Sadek of Corralytics. Courtesy photo

Corrosion is not something most people think about, but for Houston's industrial backbone pipelines, refineries, chemical plants, and water infrastructure, it is a silent and costly threat. Replacing damaged steel and overusing chemicals adds hundreds of millions of tons of carbon emissions every year. Despite the scale of the problem, corrosion detection has barely changed in decades.

In a recent episode of the Energy Tech Startups Podcast, Anwar Sadek, founder and CEO of Corrolytics, explained why the traditional approach is not working and how his team is delivering real-time visibility into one of the most overlooked challenges in the energy transition.

From Lab Insight to Industrial Breakthrough

Anwar began as a researcher studying how metals degrade and how microbes accelerate corrosion. He quickly noticed a major gap. Companies could detect the presence of microorganisms, but they could not tell whether those microbes were actually causing corrosion or how quickly the damage was happening. Most tests required shipping samples to a lab and waiting months for results, long after conditions inside the asset had changed.

That gap inspired Corrolytics' breakthrough. The company developed a portable, real-time electrochemical test that measures microbial corrosion activity directly from fluid samples. No invasive probes. No complex lab work. Just the immediate data operators can act on.

“It is like switching from film to digital photography,” Anwar says. “What used to take months now takes a couple of hours.”

Why Corrosion Matters in Houston's Energy Transition

Houston's energy transition is a blend of innovation and practicality. While the world builds new low-carbon systems, the region still depends on existing industrial infrastructure. Keeping those assets safe, efficient, and emission-conscious is essential.

This is where Corrolytics fits in. Every leak prevented, every pipeline protected, and every unnecessary gallon of biocide avoided reduces emissions and improves operational safety. The company is already seeing interest across oil and gas, petrochemicals, water and wastewater treatment, HVAC, industrial cooling, and biofuels. If fluids move through metal, microbial corrosion can occur, and Corrolytics can detect it.

Because microbes evolve quickly, slow testing methods simply cannot keep up. “By the time a company gets lab results, the environment has changed completely,” Anwar explains. “You cannot manage what you cannot measure.”

A Scientist Steps Into the CEO Role

Anwar did not plan to become a CEO. But through the National Science Foundation's ICorps program, he interviewed more than 300 industry stakeholders. Over 95 percent cited microbial corrosion as a major issue with no effective tool to address it. That validation pushed him to transform his research into a product.

Since then, Corrolytics has moved from prototype to real-world pilots in Brazil and Houston, with early partners already using the technology and some preparing to invest. Along the way, Anwar learned to lead teams, speak the language of industry, and guide the company through challenges. “When things go wrong, and they do, it is the CEO's job to steady the team,” he says.

Why Houston

Relocating to Houston accelerated everything. Customers, partners, advisors, and manufacturing talent are all here. For industrial and energy tech startups, Houston offers an ecosystem built for scale.

What's Next

Corrolytics is preparing for broader pilots, commercial partnerships, and team growth as it continues its fundraising efforts. For anyone focused on asset integrity, emissions reduction, or industrial innovation, this is a company to watch.

Listen to the full conversation with Anwar Sadek on the Energy Tech Startups Podcast to learn more:

---

Energy Tech Startups Podcast is hosted by Jason Ethier and Nada Ahmed. It delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.


Anwar Sadek of Corrolytics joins the Houston Innovators Podcast to discuss his company's growth and move to Houston. Photo courtesy

This Houston innovator's innovative corrosion detection tech is vital to the future of energy

now streaming

Houston-based Corrolytics approach is to help revolutionize and digitize microbial corrosion detection — both to improves efficiency and operational cost for industrial companies, but also to move the needle on a cleaner future for the energy industry.

"We are having an energy transition — that is a given. As we are bringing new energy, there will be growth of infrastructure to them. Every single path for the energy transition, corrosion will play a primary role as well," Anwar Sadek, co-founder and CEO of Corrolytics, says on the Houston Innovators Podcast.

The technology Sadek and his team have created is a tool to detect microbial corrosion — a major problem for industrial businesses, especially within the energy sector. Sadek describes the product as being similar to a testing hit a patient would use at home or in a clinic setting to decipher their current ailments.



Users of the Corrolytics test kit can input their pipeline sample in the field and receive results via Corrolytics software platform.

"This technology, most importantly, is noninvasive. It does not have to be installed into any pipelines or assets that the company currently has," Sadek explains. "To actually use it, you don't have to introduce new techniques or new processes in the current operations. It's a stand-alone, portable device."

Corrolytics hopes to work with new energies from the beginning to used the data they've collected to prevent corrosion in new facilities. However, the company's technology is already making an impact.

"Every year, there is about 1.2 gigaton of carbon footprint a year that is released into the environment that is associated with replacing corroded steel in general industries," Sadek says. "With Corrolytics, (industrial companies) have the ability to extend the life of their current infrastructure."

Despite having success in taking his technology from lab to commercialization, Sadek made the strategic decision to move his company, Corrolytics, from where it was founded in Ohio to Houston.

"Houston is the energy capital of the world. For the technology we are developing, it is the most strategic move for us to be in this ecosystem and in this city where all the energy companies are, where all the investors in the energy space are — and things are moving really fast in Houston in terms of energy transition and developing the current infrastructure," Sadek says.

And as big as a move as it was, it was worth it, Sadek says.

"It's been only a year that we've been here, but we've made the most developments, the most outreach to clients in this one last year."

Sadek says his move to Houston has already paid off, and he cites one of the company's big wins was at the 2024 Houston Innovation Awards, where Corrolytics won two awards.

———

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

New Gulf Coast recycling plant partners with first-of-kind circularity hub

now open

TALKE USA Inc., the Houston-area arm of German logistics company TALKE, officially opened its Recycling Support Center earlier this month.

Located next to the company's Houston-area headquarters, the plant will process post-consumer plastic materials, which will eventually be converted into recycling feedstock. Chambers County partially funded the plant.

“Our new recycling support center expands our overall commitment to sustainable growth, and now, the community’s plastics will be received here before they head out for recycling. This is a win for the residents of Chambers County," Richard Heath, CEO and president of TALKE USA, said in a news release.

“The opening of our recycling support facility offers a real alternative to past obstacles regarding the large amount of plastic products our local community disposes of. For our entire team, our customers, and the Mont Belvieu community, today marks a new beginning for effective, safe, and sustainable plastics recycling.”

The new plant will receive the post-consumer plastic and form it into bales. The materials will then be processed at Cyclyx's new Houston Circularity Center, a first-of-its-kind plastic waste sorting and processing facility being developed through a joint venture between Cyclix, ExxonMobil and LyondellBasell.

“Materials collected at this facility aren’t just easy-to-recycle items like water bottles and milk jugs. All plastics are accepted, including multi-layered films—like chip bags and juice pouches. This means more of the everyday plastics used in the Chambers County community can be captured and kept out of landfills,” Leslie Hushka, chief impact officer at Cyclyx, added in a LinkedIn post.

Cyclyx's circularity center is currently under construction and is expected to produce 300 million pounds of custom-formulated feedstock annually.

Houston quantum simulator research reveals clues for solar energy conversion

energy flow

Rice University scientists have used a programmable quantum simulator to mimic how energy moves through a vibrating molecule.

The research, which was published in Nature Communications last month, lets the researchers watch and control the flow of energy in real time and sheds light on processes like photosynthesis and solar energy conversion, according to a news release from the university.

The team, led by Rice assistant professor of physics and astronomy Guido Pagano, modeled a two-site molecule with one part supplying energy (the donor) and the other receiving it (the acceptor).

Unlike in previous experiments, the Rice researchers were able to smoothly tune the system to model multiple types of vibrations and manipulate the energy states in a controlled setting. This allowed the team to explore different types of energy transfer within the same platform.

“By adjusting the interactions between the donor and acceptor, coupling to two types of vibrations and the character of those vibrations, we could see how each factor influenced the flow of energy,” Pagano said in the release.

The research showed that more vibrations sped up energy transfer and opened new paths for energy to move, sometimes making transfer more efficient even with energy loss. Additionally, when vibrations differed, efficient transfer happened over a wider range of donor–acceptor energy differences.

“The results show that vibrations and their environment are not simply background noise but can actively steer energy flow in unexpected ways,” Pagano added.

The team believes the findings could help with the design of organic solar cells, molecular wires and other devices that depend on efficient energy or charge transfer. They could also have an environmental impact by improving energy harvesting to reduce energy losses in electronics.

“These are the kinds of phenomena that physical chemists have theorized exist but could not easily isolate experimentally, especially in a programmable manner, until now,” Visal So, a Rice doctoral student and first author of the study, added in the release.

The study was supported by The Welch Foundation,the Office of Naval Research, the National Science Foundation CAREER Award, the Army Research Office and the Department of Energy.

The EPA is easing pollution rules — here’s how it’s affecting Texas

In the news

The first year of President Trump’s second term has seen an aggressive rollback of federal environmental protections, which advocacy groups fear will bring more pollution, higher health risks, and less information and power for Texas communities, especially in heavily industrial and urban areas.

Within Trump’s first 100 days in office, his new Environmental Protection Agency administrator, Lee Zeldin, announced a sweeping slate of 31 deregulatory actions. The list, which Zeldin called the agency’s “greatest day of deregulation,” targeted everything from soot standards and power plant pollution rules to the Endangerment Finding, the legal and scientific foundation that obligates the EPA to regulate climate-changing pollution under the Clean Air Act.

Since then, the agency froze research grants, shrank its workforce, and removed some references to climate change and environmental justice from its website — moves that environmental advocates say send a clear signal: the EPA’s new direction will come at the expense of public health.

Cyrus Reed, conservation director of the Lone Star Chapter of the Sierra Club, said Texas is one of the states that feels EPA policy changes directly because the state has shown little interest in stepping up its environmental enforcement as the federal government scales back.

“If we were a state that was open to doing our own regulations there’d be less impact from these rollbacks,” Reed said. “But we’re not.”

“Now we have an EPA that isn’t interested in enforcing its own rules,” he added.

Richard Richter, a spokesperson at the state’s environmental agency, Texas Commission on Environmental Quality, said in a statement that the agency takes protecting public health and natural resources seriously and acts consistently and quickly to enforce federal and state environmental laws when they’re violated.

Methane rules put on pause

A major EPA move centers on methane, a potent greenhouse gas that traps heat far more efficiently than carbon dioxide over the short term. It accounts for roughly 16% of global greenhouse gas emissions and is a major driver of climate change. In the U.S., the largest source of methane emissions is the energy sector, especially in Texas, the nation’s top oil and gas producer.

In 2024, the Biden administration finalized long-anticipated rules requiring oil and gas operators to sharply reduce methane emissions from wells, pipelines, and storage facilities. The rule, developed with industry input, targeted leaks, equipment failures, and routine flaring, the burning off of excess natural gas at the wellhead.

Under the rule, operators would have been required to monitor emissions, inspect sites with gas-imaging cameras for leaks, and phase out routine flaring. States are required to come up with a plan to implement the rule, but Texas has yet to do so. Under Trump’s EPA, that deadline has been extended until January 2027 — an 18-month postponement.

Texas doesn’t have a rule to capture escaping methane emissions from energy infrastructure. Richter, the TCEQ spokesperson, said the agency continues to work toward developing the state plan.

Adrian Shelley, Texas director of the watchdog group Public Citizen, said the rule represented a rare moment of alignment between environmentalists and major oil and gas producers.

“I think the fossil fuel industry generally understood that this was the direction the planet and their industry was moving,” he said. Shelley said uniform EPA rules provided regulatory certainty for changes operators saw as inevitable.

Reed, the Sierra Club conservation director, said the delay of methane rules means Texas still has no plan to reduce emissions, while neighboring New Mexico already has imposed its own state methane emission rules that require the industry to detect and repair methane leaks and ban routine venting and flaring.

These regulations have cut methane emissions in the New Mexico portion of the Permian Basin — the oil-rich area that covers West Texas and southeast New Mexico — to half that of Texas, according to a recent data analysis by the Environmental Defense Fund. That’s despite New Mexico doubling production since 2020.

A retreat from soot standards

Fine particulate matter or PM 2.5, one of six pollutants regulated under the Clean Air Act, has been called by researchers the deadliest form of air pollution.

In 2024, the EPA under President Biden strengthened air rules for particulate matter by lowering the annual limit from 12 to 9 micrograms per cubic meter. It was the first update since 2012 and one of the most ambitious pieces of Biden’s environmental agenda, driven by mounting evidence that particulate pollution is linked to premature death, heart disease, asthma, and other respiratory illnesses.

After the rule was issued, 24 Republican-led states, including Kentucky and West Virginia, sued to revert to the weaker standard. Texas filed a separate suit asking to block the rule’s recent expansion.

State agencies are responsible for enforcing the federal standards. The TCEQ is charged with creating a list of counties that exceed the federal standard and submitting those recommendations to Gov. Greg Abbott, who then finalizes the designations and submits them to the EPA.

Under the 9 microgram standard, parts of Texas, including Dallas, Harris (which includes Houston), Tarrant (Fort Worth), and Bowie (Texarkana) counties, were in the process of being designated nonattainment areas — which, when finalized, would trigger a legal requirement for the state to develop a plan to clean up the air.

That process stalled after Trump returned to office. Gov. Greg Abbott submitted his designations to EPA last February, but EPA has not yet acted on his designations, according to Richter, the TCEQ spokesperson.

In a court filing last year, the Trump EPA asked a federal appeals court to vacate the stricter standard, bypassing the traditional notice and comment administrative process.

For now, the rule technically remains in effect, but environmental advocates say the EPA’s retreat undermines enforcement of the rule and signals to polluters that it may be short-lived.

Shelley, with Public Citizen, believes the PM2.5 rule would have delivered the greatest health benefit of any EPA regulation affecting Texas, particularly through reductions in diesel pollution from trucks.

“I still hold out hope that it will come back,” he said.

Unraveling the climate framework

Beyond individual pollutants, the Trump EPA has moved to dismantle the federal architecture for addressing climate change.

Among the proposals is eliminating the Greenhouse Gas Reporting Program, which requires power plants, refineries, and oil and gas suppliers to report annual emissions. The proposal has drawn opposition from both environmental groups and industry, which relies on the data for planning and compliance.

Colin Leyden, Texas state director and energy lead at the nonprofit Environmental Defense Fund, said eliminating the program could hurt Texas industry. If methane emissions are no longer reported, then buyers and investors of natural gas, for example, won’t have an official way to measure how much methane pollution is associated with that gas, according to Leyden. That makes it harder to judge how “clean” or “climate-friendly” the product is, which international buyers are increasingly demanding.

“This isn’t just bad for the planet,” he said. “It makes the Texas industry less competitive.”

The administration also proposed last year rescinding the Endangerment Finding, issued in 2009, which obligates the EPA to regulate climate pollution. Most recently, the EPA said it will stop calculating how much money is saved in health care costs as a result of air pollution regulations that curb particulate matter 2.5 and ozone, a component of smog. Both can cause respiratory and health problems.

Leyden said tallying up the dollar value of lives saved when evaluating pollution rules is a foundational principle of the EPA since its creation.

“That really erodes the basic idea that (the EPA) protects health and safety and the environment,” he said.

___

This story was originally published by The Texas Tribune and distributed through a partnership with The Associated Press.