The future of transportation fuels will be shaped by a mix of innovation, government policies, and what consumers want. Photo by Engin Akyurt/Pexels

Gasoline, diesel, bunker fuel, and jet fuel. Four liquid hydrocarbons that have been powering transportation for the last 100-plus years.

Gas stations, truck stops, ports, and airport fuel terminals have been built up over the last century to make transportation easy and reliable.

These conventional fuels release Greenhouse Gases (GHG) when they are used, and governments all over the world are working on plans to shift towards cleaner fuels in an effort to lower emissions and minimize the effects of climate change.

For passenger cars, it’s clear that electricity will be the cleaner fuel type, with most countries adopting electric vehicles (EVs), and in some cases, providing their citizens with incentives to make the switch.

While many articles have been written about EVs and the benefits that come along with them, they fail to look at the transportation system as a whole.

Trucks, cargo ships, and airplanes are modes of transportation that are used every day, but they don’t often get the spotlight like EVs do.

For governments to be effective in curbing transportation-related greenhouse emissions, they must consider all forms of transportation and cleaner fuel options for them as well.

43 percent of GHG emissions comes from these modes of transportation. Therefore, using electricity to reduce GHG emissions in light duty vehicles only accounts for part of the total transportation emissions equation.

The path to cleaner fuels for these transportation modes has its challenges.

According to Ed Emmett, Fellow in Energy and Transportation Policy at the Baker Institute Center for Energy Studies (CES);

  • "Airplanes cannot be realistically powered by electricity, at least not currently, and handle the same requisite freight and passenger loads"
  • "The long-haul trucking industry [...] pushed back against electrification as being impractical due to the size and weight of batteries, their limited range, and the cost of adoption"
  • "Shipowners have expressed reluctance to scrap existing bunker fueled ships for newer, more expensive ships, especially when other fueling options, e.g. biofuels and hydrocarbon derivatives-for fleets can be made available"

Finding low-cost, reliable, and environmentally sound fuels for the various segments of transportation is complex. As Emmett suggests in his latest article;

"Hovering over the transition to other fuels for almost every transportation mode is the question of dependability of supply. For the trucking industry, the truck stop industry must be able to adapt to new fuel requirements. For ocean shipping, ports must be able to meet the fuel needs of new ships. Airlines, air cargo carriers and airports need to be on the same page when it comes to aviation fuels. In other words, the adoption equation in transitions in transportation is not only a function of the availability and cost of the new technology but also a function of the cost of the full supply chain needed to support fuel production and delivery to the point of use. Going forward, the transportation industry is facing a dilemma: How are environmental concerns addressed while simultaneously maintaining operational efficiency and avoiding unnecessary upward cost shifts for moving goods and people? In answering that question, for the first time in history, modes of transportation may end up going in multiple different directions when it comes to the fuels each mode ultimately chooses."

This is why many forecasts predict that hydrocarbon demand will continue through 2050, despite ambitious aspirations of achieving net zero emissions by that year. The McKinsey "slow evolution" scenario has global liquid hydrocarbon demand in 2050 at 92mmb/d versus 103 mmb/d in 2023. With their "continued momentum" scenario, oil demand is 75 mmb/d. Proportionally, global oil demand related to GHG emissions from transportation would decline 11-27 percent. The global uptake of EVs is the primary driver of uncertainty around future oil demand. In all the McKinsey scenarios, the share of EVs in passenger cars sales is expected to be above 90 percent by 2050.

The Good News

Despite the relatively slow progress expected for reducing GHG emissions in the global transportation sector, there are solutions emerging that lower the carbon footprint tied to traditional petroleum-based fuels. Emmett highlights some of the methods under study, noting that "sustainable biofuels sourced from cooking oils, animal fats, and agriculture products, as well as hydrogen, methanol, ammonia, and various e-fuels are among the options being tested. Some ocean carriers are already ordering ships powered by liquified natural gas, bio-e-methanol, bio/e-methane, ammonia, and hydrogen. Airlines are already using sustainable aviation fuel as a supplement to basic aviation fuel. Railroads are testing hydrogen locomotives. The trucking industry is decarbonizing local delivery by using vehicles powered by electricity, compressed natural gas, and sustainable diesel. Long-haul trucking companies are considering sustainable diesel as a drop-in fuel for existing equipment, and fuel suppliers are researching new engines fueled by hydrogen and other alternative fuels."

Most of these options will require a combination of increased government incentives, along with advancements in technology and cost reductions.

McKinsey's "sustainable transformation" scenario, which considers potential shifts in government regulations as well as advancements in technology and cost, suggests there is moderate growth in alternative fuels alongside growth in EVs. Mckinsey projects;

  • EV demand could grow to over 90 percent of total passenger car sales by 2050
  • EVs to make up around 80 percent of commercial truck sales by 2050
  • In aviation, low carbon fuels such as biofuels, synfuels, hydrogen and electricity are projected to grow to 49 percent by 2050.

According to McKinsey, the combination of these alternatives along with demand changes in power and chemicals could reduce global oil demand to 60 mmb/d in 2050. The shift to cleaner fuels, for modes of transportation other than EVs, is underway but the progress and adoption will take decades to achieve according to McKinsey’s forecasts.

Looking more closely at EVs, the story may not be as dire globally as it seems to be in the West. While the U.S. appears to be losing momentum on electric vehicle adoption, China is roaring ahead. New electric car registrations in China reached 8.1 million in 2023, increasing by 35 percent relative to 2022. McKinsey’s forecasts have underestimated global EV sales in the past, with China surpassing their estimates, while the U.S. lags behind. It’s clear that China is the winner in EV adoption; could they also lead the way to adopt cleaner fuels for other modes of transport? That is something governments and the transportation industry will be watching in the years ahead.

Conclusion

While we are not on a trajectory to meet the aspirations to reduce global GHG emissions in the transportation sector, there are emerging solutions that could be adopted should governments around the world decide to put in place the incentives to get there. Moving forward, the future of transportation fuels will be shaped by a mix of innovation, government policies, and what consumers want. The focus will be on ensuring that the transportation sector remains reliable, secure, and economically robust, while also reducing GHG emissions. But, decarbonizing the transportation sector is much more than just EV's – it's a broader effort that will require continued global progress in each of the multiple transportation segments.

------------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn on October 9, 2024.

ExxonMobil and Mitsubishi are still working out details of the arrangement, such as equity participation in the project and use of the low-carbon ammonia. Photo via exxonmobil.com

Mitsubishi, ExxonMobil announce low-carbon ammonia production partnership in Baytown

dream team

Spring-based ExxonMobil has teamed up with Japan’s Mitsubishi to potentially produce low-carbon ammonia and nearly carbon-free hydrogen at ExxonMobil’s facility in Baytown.

ExxonMobil and Mitsubishi are still working out details of the arrangement, such as equity participation in the project and use of the low-carbon ammonia.

“We look forward to furthering our leadership position, alongside Mitsubishi Corporation, to advance low-carbon hydrogen and ammonia globally, helping the world achieve a lower emission future,” Dan Ammann, president of ExxonMobil Low Carbon Solutions, says in a news release.

The ammonia would be shipped to Japan for power generation, process heating, and other industrial purposes. In conjunction with this project, Mitsubishi would convert part of a liquified petroleum gas (LPG) terminal into an ammonia terminal. The Japanese conglomerate plans to partner with Japanese petroleum company Idemitsu Kosan for ammonia purchases and a joint equity stake in the Baytown project.

The Baytown project is expected to generate as much as one billion cubic square feet of low-carbon hydrogen per day and more than one million tons of low-carbon ammonia per year.

A financial decision on the project is set for 2025, with the project coming online in 2029.

“We are excited to be closely collaborating with ExxonMobil to develop low-carbon hydrogen and ammonia supply chains that will bridge the United States and Japan,” says Masaru Saito, CEO of Mitsubishi’s Environmental Energy Group. “Together, we will lead this joint initiative to assist in the acceleration of the hard-to-abate sectors’ transition to clean energy.”

The project’s first phase is targeted to produce more than 1.1 million tonnes per annum of low-carbon ammonia by the end of 2027. Photo via Houston.org

4 energy companies join forces on low-carbon ammonia project on the Houston Ship Channel

team work

Four companies from all around the world have agreed to work on a large-scale, low-carbon ammonia production and export project on the Houston Ship Channel.

Tokyo-based INPEX Corporation, Paris-based Air Liquide Group, Oklahoma City-based LSB Industries Inc., and Houston-based Vopak Moda Houston LLC have agreed to collaborate on the project, which is expected to deliver its first phase by the end of 2027 with the production of more than 1.1 million tonnes per annum (MTPA) of low-carbon ammonia.

“As we approach the achievement of our net zero target by 2050, the unveiling of our low carbon ammonia project in Texas, USA, stands as a momentous testament to INPEX's strong commitment to environmental leadership," INPEX President and CEO Takayuki Ueda says in a news release. "This innovative endeavor marks a significant milestone to create a clean fuel supply chain for a sustainable future.

"By harnessing the power of cutting-edge technologies and collaborative partnerships with Air Liquide, LSB and Vopak Moda, we are accelerating the transition to a low-carbon world, while solidifying our position as a pioneer in energy transformation and a responsible global energy player,” he continues.

Earlier this year, the project completed a feasibility study. Each of the companies will collaborate in various capacities, according to the release, including: Air Liquide and INPEX partnering on low-carbon hydrogen production with their respective technologies; LSB and INPEX collaborating on low-carbon ammonia production, with LSB selecting the ammonia loop technology provider, the pre-FEED, and the engineering, procurement and construction of the facility and LSB overseeing day-to-day operations; INPEX and LSB would sell the low-carbon ammonia and finalize off-take agreements; and Vopak Moda, which currently operates ammonia storage and handling infrastructure, will maintain its ownership of the existing infrastructure and future storage built.

“This project is well aligned with our strategy to become a leader in the global energy transition through the production of low-carbon ammonia,” Mark Behrman, LSB Industries president and CEO, says in the statement. “As a long-standing, highly experienced nitrogen producer and developer of nitrogen production facilities, we are uniquely positioned to play a key role in a critical element of this project by overseeing the design, construction and operation of the ammonia loop."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston energy company to invest $1B in U.S. electric grid manufacturing

grid boost

Hitachi Energy, whose U.S. headquarters is in Houston, has earmarked more than $1 billion to manufacture infrastructure for the U.S. electric grid, which is coping with greater power demand from data centers and AI platforms.

Of that sum, $457 million is dedicated to building a power transformer factory in Virginia. Hitachi Energy said it’ll be the largest facility of its kind in the U.S.

“Power transformers are a linchpin technology for a robust and reliable electric grid and winning the AI race. Bringing production of large power transformers to the U.S. is critical to building a strong domestic supply chain for the U.S. economy and reducing production bottlenecks, which is essential as demand for these transformers across the economy is surging,” said Andreas Schierenbeck, CEO of Switzerland-based Hitachi Energy, which generates revenue of about $16 billion.

The Hitachi announcement aligns with various priorities of the Trump administration. The White House is promoting more U.S.-based manufacturing, more power to accommodate data centers and AI, and greater use of U.S. energy resources.

“If we are going to win the AI race, reindustrialize, and keep the lights on, America is going to need a lot more reliable energy,” U.S. Energy Secretary Chris Wright said.

Texas still has its best solar days ahead of it, even as federal tax credit sunsets

Guest Column

If you follow energy policy, you already know that Congress repealed the 30% residential solar tax credit. This poses a significant challenge for continued growth in the market. It also provides an opportunity for the industry to grow in a smart, consumer-friendly way. That’s why in Texas, the story is what happens next: The state and the market are continuing to make going solar much simpler, better, and cheaper.

Policies are moving in the right direction. For example, starting this month, a bipartisan permitting reform takes effect that will cut red tape for home solar and batteries. It lets licensed third-party professionals review plans and perform inspections, requires agencies to post standardized rules and fees online, and allows homeowners to start work once those third-party approvals are submitted. It also shifts negligence liability to the third-party reviewer, thereby reducing municipal risk while accelerating safe, code-compliant installs. In plain English: fewer bottlenecks, faster installs, and lower “soft costs.”

As a result, Houston is already piloting the National Renewable Energy Lab’s free SolarAPP+ to auto-approve standard solar designs, which cuts roughly 12 days from typical timelines. Independent analyses estimate that these automated permitting rules could trim rooftop solar costs by thousands. In other words, even small, costless policy changes like this can save you almost as much money as the huge solar tax credit did, and these great reforms are happening all the time, and they make the process much more convenient and reliable.

While Texas is making solar simpler, it’s also helping consumers have a good experience when going solar. As of this month, Texas law now also requires solar salespeople to register with the Texas Department of Licensing and Regulation. The same bill standardizes contracts and provides for mandatory disclosures of upfront cost and financing terms. The whole solar industry benefits when customers have a good solar experience. Word of mouth is vital to keeping solar shining.

There's yet another pro-solar Texas law that's also going into effect this month: in addition to SB 1202 (streamlining solar permits) and SB 1036 (regulating solar sales tactics), the legislature is also supporting the dissemination of information about your options when going solar via SB 1697. You can read more about these three brand-new pro-solar state laws here.

The end of the solar tax credit is not the end of the solar industry. Far from it.

---

Dori Wolf is Senior Texas Program Associate for Solar United Neighbors, a vendor and neutral nonprofit with more than 15 years helping people go solar. Their free Solar Help Desk walks you through the details. Also check out their Go Solar Guide and Solar Owner’s Manual.

Solar United Neighbors also helps you find the best retail electricity plan through its partnership with Texas Power Guide.

Sunnova assets officially sold as founder launches new Houston energy startup

solar shift

Solaris Assets has completed its acquisition of the majority of Sunnova Energy International’s residential solar assets. Houston-based Sunnova filed for Chapter 11 bankruptcy this summer after piling up billions of dollars in debt.

Meanwhile, Sunnova founder and former CEO John Berger has launched a Houston-based home energy services startup, Otovo USA, which just received more than $4 million in seed funding.

Solaris now owns Sunnova’s residential solar services platform and its solar generation and storage portfolio, along with leases, loans and power purchase agreements. Sunnova’s operations are being shifted to SunStrong Management, an Austin-based asset manager for the renewable energy sector.

“By bringing together SunStrong’s asset management expertise with Sunnova’s nationally scaled customer base, we are creating a stronger, more capable leader in the solar industry,” Brendon Merkley, CEO of SunStrong, said in a news release. “Our priority is to maintain the highest levels of service for customers as we expand our footprint as a premier solar asset servicer.”

In June, Sunnova sold its new-home business to homebuilder Lennar for $15.2 million and sold certain assets to investment firm Atlas SP Partners for $15 million.

As of December, Sunnova’s debt totaled nearly $10.7 billion, Reuters reported. Sunnova faced numerous challenges in its quest to survive, including higher interest rates, the reduction of solar incentives in California, and a shakeup in federal subsidies for renewable energy.

Sunnova filed for Chapter 11 bankruptcy in June. A month later, a bankruptcy judge approved the court-supervised sale of Sunnova. Solaris’ acquisition of Sunnova closed Sept. 3.

As SunStrong absorbs the bulk of Sunnova’s assets, Berger — who quit in March as Sunnova’s CEO — has formed a new business. He’s now the founder and CEO of Otovo USA, a partner of European residential power company Otovo.

Otovo USA offers solar power systems, solar batteries, standby generators, EV chargers, electric-load managers, and other power generation and management systems. Otovo’s AI-supported offerings are now available in Texas; the company plans to expand nationwide.

Otovo USA raised its seed funding from the EIC Rose Rock Venture Fund, which invests in energy startups.

“Otovo USA is here to help the millions of Americans with home energy services that are fed up with the complexities of warranties, juggling multiple vendors, and long repair times,” Berger said. The startup, he added, “is bringing customers what they really need: reliable power and a single partner accountable for keeping it up and running. It’s your power, backed by ours.”