The future of transportation fuels will be shaped by a mix of innovation, government policies, and what consumers want. Photo by Engin Akyurt/Pexels

Gasoline, diesel, bunker fuel, and jet fuel. Four liquid hydrocarbons that have been powering transportation for the last 100-plus years.

Gas stations, truck stops, ports, and airport fuel terminals have been built up over the last century to make transportation easy and reliable.

These conventional fuels release Greenhouse Gases (GHG) when they are used, and governments all over the world are working on plans to shift towards cleaner fuels in an effort to lower emissions and minimize the effects of climate change.

For passenger cars, it’s clear that electricity will be the cleaner fuel type, with most countries adopting electric vehicles (EVs), and in some cases, providing their citizens with incentives to make the switch.

While many articles have been written about EVs and the benefits that come along with them, they fail to look at the transportation system as a whole.

Trucks, cargo ships, and airplanes are modes of transportation that are used every day, but they don’t often get the spotlight like EVs do.

For governments to be effective in curbing transportation-related greenhouse emissions, they must consider all forms of transportation and cleaner fuel options for them as well.

43 percent of GHG emissions comes from these modes of transportation. Therefore, using electricity to reduce GHG emissions in light duty vehicles only accounts for part of the total transportation emissions equation.

The path to cleaner fuels for these transportation modes has its challenges.

According to Ed Emmett, Fellow in Energy and Transportation Policy at the Baker Institute Center for Energy Studies (CES);

  • "Airplanes cannot be realistically powered by electricity, at least not currently, and handle the same requisite freight and passenger loads"
  • "The long-haul trucking industry [...] pushed back against electrification as being impractical due to the size and weight of batteries, their limited range, and the cost of adoption"
  • "Shipowners have expressed reluctance to scrap existing bunker fueled ships for newer, more expensive ships, especially when other fueling options, e.g. biofuels and hydrocarbon derivatives-for fleets can be made available"

Finding low-cost, reliable, and environmentally sound fuels for the various segments of transportation is complex. As Emmett suggests in his latest article;

"Hovering over the transition to other fuels for almost every transportation mode is the question of dependability of supply. For the trucking industry, the truck stop industry must be able to adapt to new fuel requirements. For ocean shipping, ports must be able to meet the fuel needs of new ships. Airlines, air cargo carriers and airports need to be on the same page when it comes to aviation fuels. In other words, the adoption equation in transitions in transportation is not only a function of the availability and cost of the new technology but also a function of the cost of the full supply chain needed to support fuel production and delivery to the point of use. Going forward, the transportation industry is facing a dilemma: How are environmental concerns addressed while simultaneously maintaining operational efficiency and avoiding unnecessary upward cost shifts for moving goods and people? In answering that question, for the first time in history, modes of transportation may end up going in multiple different directions when it comes to the fuels each mode ultimately chooses."

This is why many forecasts predict that hydrocarbon demand will continue through 2050, despite ambitious aspirations of achieving net zero emissions by that year. The McKinsey "slow evolution" scenario has global liquid hydrocarbon demand in 2050 at 92mmb/d versus 103 mmb/d in 2023. With their "continued momentum" scenario, oil demand is 75 mmb/d. Proportionally, global oil demand related to GHG emissions from transportation would decline 11-27 percent. The global uptake of EVs is the primary driver of uncertainty around future oil demand. In all the McKinsey scenarios, the share of EVs in passenger cars sales is expected to be above 90 percent by 2050.

The Good News

Despite the relatively slow progress expected for reducing GHG emissions in the global transportation sector, there are solutions emerging that lower the carbon footprint tied to traditional petroleum-based fuels. Emmett highlights some of the methods under study, noting that "sustainable biofuels sourced from cooking oils, animal fats, and agriculture products, as well as hydrogen, methanol, ammonia, and various e-fuels are among the options being tested. Some ocean carriers are already ordering ships powered by liquified natural gas, bio-e-methanol, bio/e-methane, ammonia, and hydrogen. Airlines are already using sustainable aviation fuel as a supplement to basic aviation fuel. Railroads are testing hydrogen locomotives. The trucking industry is decarbonizing local delivery by using vehicles powered by electricity, compressed natural gas, and sustainable diesel. Long-haul trucking companies are considering sustainable diesel as a drop-in fuel for existing equipment, and fuel suppliers are researching new engines fueled by hydrogen and other alternative fuels."

Most of these options will require a combination of increased government incentives, along with advancements in technology and cost reductions.

McKinsey's "sustainable transformation" scenario, which considers potential shifts in government regulations as well as advancements in technology and cost, suggests there is moderate growth in alternative fuels alongside growth in EVs. Mckinsey projects;

  • EV demand could grow to over 90 percent of total passenger car sales by 2050
  • EVs to make up around 80 percent of commercial truck sales by 2050
  • In aviation, low carbon fuels such as biofuels, synfuels, hydrogen and electricity are projected to grow to 49 percent by 2050.

According to McKinsey, the combination of these alternatives along with demand changes in power and chemicals could reduce global oil demand to 60 mmb/d in 2050. The shift to cleaner fuels, for modes of transportation other than EVs, is underway but the progress and adoption will take decades to achieve according to McKinsey’s forecasts.

Looking more closely at EVs, the story may not be as dire globally as it seems to be in the West. While the U.S. appears to be losing momentum on electric vehicle adoption, China is roaring ahead. New electric car registrations in China reached 8.1 million in 2023, increasing by 35 percent relative to 2022. McKinsey’s forecasts have underestimated global EV sales in the past, with China surpassing their estimates, while the U.S. lags behind. It’s clear that China is the winner in EV adoption; could they also lead the way to adopt cleaner fuels for other modes of transport? That is something governments and the transportation industry will be watching in the years ahead.

Conclusion

While we are not on a trajectory to meet the aspirations to reduce global GHG emissions in the transportation sector, there are emerging solutions that could be adopted should governments around the world decide to put in place the incentives to get there. Moving forward, the future of transportation fuels will be shaped by a mix of innovation, government policies, and what consumers want. The focus will be on ensuring that the transportation sector remains reliable, secure, and economically robust, while also reducing GHG emissions. But, decarbonizing the transportation sector is much more than just EV's – it's a broader effort that will require continued global progress in each of the multiple transportation segments.

------------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn on October 9, 2024.

ExxonMobil and Mitsubishi are still working out details of the arrangement, such as equity participation in the project and use of the low-carbon ammonia. Photo via exxonmobil.com

Mitsubishi, ExxonMobil announce low-carbon ammonia production partnership in Baytown

dream team

Spring-based ExxonMobil has teamed up with Japan’s Mitsubishi to potentially produce low-carbon ammonia and nearly carbon-free hydrogen at ExxonMobil’s facility in Baytown.

ExxonMobil and Mitsubishi are still working out details of the arrangement, such as equity participation in the project and use of the low-carbon ammonia.

“We look forward to furthering our leadership position, alongside Mitsubishi Corporation, to advance low-carbon hydrogen and ammonia globally, helping the world achieve a lower emission future,” Dan Ammann, president of ExxonMobil Low Carbon Solutions, says in a news release.

The ammonia would be shipped to Japan for power generation, process heating, and other industrial purposes. In conjunction with this project, Mitsubishi would convert part of a liquified petroleum gas (LPG) terminal into an ammonia terminal. The Japanese conglomerate plans to partner with Japanese petroleum company Idemitsu Kosan for ammonia purchases and a joint equity stake in the Baytown project.

The Baytown project is expected to generate as much as one billion cubic square feet of low-carbon hydrogen per day and more than one million tons of low-carbon ammonia per year.

A financial decision on the project is set for 2025, with the project coming online in 2029.

“We are excited to be closely collaborating with ExxonMobil to develop low-carbon hydrogen and ammonia supply chains that will bridge the United States and Japan,” says Masaru Saito, CEO of Mitsubishi’s Environmental Energy Group. “Together, we will lead this joint initiative to assist in the acceleration of the hard-to-abate sectors’ transition to clean energy.”

The project’s first phase is targeted to produce more than 1.1 million tonnes per annum of low-carbon ammonia by the end of 2027. Photo via Houston.org

4 energy companies join forces on low-carbon ammonia project on the Houston Ship Channel

team work

Four companies from all around the world have agreed to work on a large-scale, low-carbon ammonia production and export project on the Houston Ship Channel.

Tokyo-based INPEX Corporation, Paris-based Air Liquide Group, Oklahoma City-based LSB Industries Inc., and Houston-based Vopak Moda Houston LLC have agreed to collaborate on the project, which is expected to deliver its first phase by the end of 2027 with the production of more than 1.1 million tonnes per annum (MTPA) of low-carbon ammonia.

“As we approach the achievement of our net zero target by 2050, the unveiling of our low carbon ammonia project in Texas, USA, stands as a momentous testament to INPEX's strong commitment to environmental leadership," INPEX President and CEO Takayuki Ueda says in a news release. "This innovative endeavor marks a significant milestone to create a clean fuel supply chain for a sustainable future.

"By harnessing the power of cutting-edge technologies and collaborative partnerships with Air Liquide, LSB and Vopak Moda, we are accelerating the transition to a low-carbon world, while solidifying our position as a pioneer in energy transformation and a responsible global energy player,” he continues.

Earlier this year, the project completed a feasibility study. Each of the companies will collaborate in various capacities, according to the release, including: Air Liquide and INPEX partnering on low-carbon hydrogen production with their respective technologies; LSB and INPEX collaborating on low-carbon ammonia production, with LSB selecting the ammonia loop technology provider, the pre-FEED, and the engineering, procurement and construction of the facility and LSB overseeing day-to-day operations; INPEX and LSB would sell the low-carbon ammonia and finalize off-take agreements; and Vopak Moda, which currently operates ammonia storage and handling infrastructure, will maintain its ownership of the existing infrastructure and future storage built.

“This project is well aligned with our strategy to become a leader in the global energy transition through the production of low-carbon ammonia,” Mark Behrman, LSB Industries president and CEO, says in the statement. “As a long-standing, highly experienced nitrogen producer and developer of nitrogen production facilities, we are uniquely positioned to play a key role in a critical element of this project by overseeing the design, construction and operation of the ammonia loop."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

ERCOT steps up grid innovation efforts to support growing power demand

grid boost

As AI data centers gobble up more electricity, the Electric Reliability Council of Texas (ERCOT) — whose grid supplies power to 90 percent of Texas — has launched an initiative to help meet challenges presented by an increasingly strained power grid.

ERCOT, based in the Austin suburb of Taylor, said its new Grid Research, Innovation, and Transformation (GRIT) initiative will tackle research and prototyping of emerging technology and concepts to “deeply understand the implications of rapid grid and technology evolution, positioning ERCOT to lead in the future energy landscape.”

“As the ERCOT grid continues to rapidly evolve, we are seeing greater interest from industry and academia to collaborate on new tools and innovative technologies to advance the reliability needs of tomorrow’s energy systems,” ERCOT President and CEO Pablo Vegas said in a news release. “These efforts will provide an opportunity to share ideas and bring new innovations forward, as we work together to lead the evolution and expansion of the electric power grid.”

In conjunction with the GRIT initiative, ERCOT launched the Research and Innovation Partnership Engagement (RIPE) program. The program enables partners to work with ERCOT on developing technology aimed at resolving grid challenges.

To capitalize on ideas for grid improvements, the organization will host its third annual ERCOT Innovation Summit on March 31 in Round Rock. The summit “brings together thought leaders across the energy research and innovation ecosystem to explore solutions that use innovation to impact grid transformation,” ERCOT said.

“As the depth of information and industry collaboration evolves, we will continue to enhance the GRIT webpages to create a dynamic and valuable resource for the broader industry to continue fostering strong collaboration and innovation with our stakeholders,” said Venkat Tirupati, ERCOT’s vice president of DevOps and grid transformation.

ERCOT’s GRIT initiative comes at a time when the U.S. is girding for heightened demand for power, due in large part to the rise of data centers catering to the AI boom.

A study released in 2024 by the Electric Power Research Institute (EPRI) predicted electricity for data centers could represent as much as 9.1 percent of total power usage in the U.S. by 2030. According to EPRI, the share of Texas electricity consumed by data centers could climb from 4.6 percent in 2023 to almost 11 percent by 2030.

A report issued in 2024 by the federal government’s Lawrence Berkeley National Laboratory envisions an even faster increase in data-center power usage. The report projected data centers will consume as much as 12 percent of U.S. electricity by 2028, up from 4.4 percent in 2023.

In 2023, the EPRI study estimated, 80 percent of the U.S. electrical load for data centers was concentrated in two states, led by Virginia and Texas. The University of Texas at Austin’s Center for Media Engagement reported in July that Texas is home to 350 data centers, second only to Virginia.

“The U.S. electricity sector is working hard to meet the growing demands of data centers, transportation electrification, crypto-mining, and industrial onshoring, while balancing decarbonization efforts,” David Porter, EPRI’s vice president of electrification and sustainable energy strategy, said. “The data center boom requires closer collaboration between large data center owners and developers, utilities, government, and other stakeholders to ensure that we can power the needs of AI while maintaining reliable, affordable power to all customers.”

Policy adviser tapped to lead ‘nuclear renaissance’ in Texas

going nuclear

As Texas places a $350 million bet on nuclear energy, a budget and policy adviser for Gov. Greg Abbott has been tapped to head the newly created Texas Advanced Nuclear Energy Office.

Jarred Shaffer is now director of the nuclear energy office, which administers the $350 million Texas Advanced Nuclear Development Fund. The fund will distribute grants earmarked for the development of more nuclear reactors in Texas.

Abbott said Shaffer’s expertise in energy will help Texas streamline nuclear regulations and guide “direct investments to spur a flourishing and competitive nuclear power industry in the Lone Star State. Texas will lead the nuclear renaissance.”

The Texas Nuclear Alliance says growth of nuclear power in the U.S. has stalled while China and Russia have made significant gains in the nuclear sector.

“As Texas considers its energy future, the time has come to invest in nuclear power — an energy source capable of ensuring grid reliability, economic opportunity, and energy and national security,” Reed Clay, president of the alliance, said.

“Texas is entering a pivotal moment and has a unique opportunity to lead. The rise of artificial intelligence and a rebounding manufacturing base will place unprecedented demands on our electricity infrastructure,” Clay added. “Meeting this moment will require consistent, dependable power, and with our business-friendly climate, streamlined regulatory processes, and energy-savvy workforce, we are well-positioned to become the hub for next-generation nuclear development.”

Abbott’s push for increased reliance on nuclear power in Texas comes as public support for the energy source grows. A 2024 survey commissioned by the Texas Public Policy Institute found 55 percent of Texans support nuclear energy. Nationwide support for nuclear power is even higher. A 2024 survey conducted by Bisconti Research showed a record-high 77 percent of Americans support nuclear energy.

Nuclear power accounted for 7.5 percent of Texas’ electricity as of 2024, according to the Nuclear Energy Institute, but made up a little over 20 percent of the state’s clean energy. Currently, four traditional reactors produce nuclear power at two plants in Texas. The total capacity of the four nuclear reactors is nearly 5,000 megawatts.

Because large nuclear plants take years to license and build, small factory-made modular reactors will meet much of the shorter-term demand for nuclear energy. A small modular reactor has a power capacity of up to 300 megawatts. That’s about one-third of the generating power of a traditional nuclear reactor, according to the International Atomic Energy Agency.

A report from BofA Global Research predicts the global market for small nuclear reactors could reach $1 trillion by 2050. These reactors are cheaper and safer than their larger counterparts, and take less time to build and produce fewer CO2 emissions, according to the report. Another report, this one from research company Bloomberg Intelligence, says soaring demand for electricity — driven mostly by AI data centers — will fuel a $350 billion boom in nuclear spending in the U.S., boosting output from reactors by 63 percent by 2050.

Global nuclear capacity must triple in size by 2050 to keep up with energy demand tied to the rise of power-gobbling AI data centers, and to accomplish decarbonization and energy security goals, the BofA report says. Data centers could account for nine percent of U.S. electricity demand by 2035, up from about four percent today, according to BloombergNEF.

As the Energy Capital of the World, Houston stands to play a pivotal role in the evolution of small and large nuclear reactors in Texas and around the world. Here are just three of the nuclear power advancements that are happening in and around Houston:

Houston is poised to grab a big chunk of the more than 100,000 jobs and more than $50 billion in economic benefits that Jimmy Glotfelty, a former member of the Texas Public Utility Commission, predicts Texas will gain from the state’s nuclear boom. He said nuclear energy legislation signed into law this year by Abbott will provide “a leg up on every other state” in the race to capitalize on the burgeoning nuclear economy.

“Everybody in the nuclear space would like to build plants here in Texas,” Inside Climate News quoted Glotfelty as saying. “We are the low-regulatory, low-cost state. We have the supply chain. We have the labor.”

6 must-attend Houston energy transition events in October 2025

Must-Attend Meetings

Editor's note: October is here, and there are many energy events to plug into in Houston this month. From summits and forums to global conferences, there are the energy events to put on your calendar. Learn more below, and register now.

Oct. 7-8: Annual Energy Summit — Resilience in Energy Supply Chains

The ninth annual energy summit is co-hosted by Baker Botts and the Center for Energy Studies at Rice University's Baker Institute. This year's theme, “Resilience in Energy Supply Chains,” will focus on what is shaping the future of energy, and how markets, innovation, and economic growth will define the evolution of global energy supply chains.

This two-day event begins Oct. 7 at Rice University's Baker Institute for Public Policy. The event will also be livestreamed. Get tickets here.

Oct. 14: Current Trends in the Energy Industry

Join SABA and Vinson & Elkins LLP for an evening filled with insightful discussions and networking opportunities for seasoned professionals and those new to the energy industry. Learn from experts about the latest developments in the energy industry, sustainability efforts, and new policies shaping the future.

This event takes place at 6 pm at Vinson & Elkins LLP headquarters. Get tickets here.

Oct. 14-16: SAF North America

The leading event for the sustainable aviation fuel ecosystem is taking place in Houston, America’s fuel and energy hub. SAF North America brings together the SAF value chain under one roof for three days of high-level discussion. Attendees of the conference will hear from leading experts, who will provide insights on the aviation industry and discuss SAF scale-up, energy security, and pathways to decarbonize aviation in North America. There will also be dynamic exhibitions and networking opportunities.

This event begins Oct. 14 at the Marriott Marquis. Register here.

Oct. 16: Future of Global Energy Conference

The Future of Global Energy Conference, presented by Shell USA, Inc., brings together leaders from across industry, academia, and government to explore the forces shaping the future of energy. Houston is leading the way in the energy sector, leveraging its deep industry expertise, unmatched energy ecosystem, and spirit of innovation. The 2025 conference will spotlight Houston’s ongoing leadership in policy, technology development, and project execution that position the region for long-term success.

This event begins at 8:30 am at Hilton Americas. Register here.

Oct. 21-23: Energy Independence Summit

At Infocast’s inaugural Energy Independence Summit, top leaders across energy, finance, and policy will convene to evaluate where the energy market is headed next. Attendees will gain critical insights into how capital is being deployed, which technologies are emerging as the most viable under OBBBA, how domestic supply chains are affecting costs and timelines, and what regulatory levers may help stabilize the sector. The summit will feature 100 speakers, 24 sessions, networking opportunities, and more.

This event takes place Oct. 21 at the C. Baldwin, Curio Collection by Hilton. Register here.

Oct. 29: 2025 Global Energy Summit

Hosted by the World Affairs Council of Greater Houston, the Global Energy Summit examines the dynamic forces shaping today’s energy landscape. Attendees will engage with a diverse set of industry experts and global thought leaders on the future of energy security, access, and technological advancement. Opening remarks will be made by Cristina Saenz de Santa Maria, COO Maritime of DNV, followed by panel discussions featuring speakers from DNV, Accenture, Amazon Web Services, Center for Houston’s Future, Siemens, SLB, and NRG.

This event begins at 5 pm on Oct. 29 at the Omni Houston. Get tickets here.