The Department of Energy has axed federal funding for Houston-area clean energy projects from ExxonMobil, Calpine and Ørsted. Photo via exxonmobil.com

The federal government has canceled more than $700 million in funding for three clean energy projects in the Houston area.

In all, the U.S. Department of Energy (DOE) recently wiped out $3.7 billion in funding for 24 carbon capture and decarbonization projects across the country.

Houston-area projects that took a hit are:

It’s unclear how the loss of federal funding will affect the three Houston-area projects.

All $3.7 billion from the DOE was awarded in 2024 and 2025 during the Biden administration—in some cases days before President Trump took office.

“While the previous administration failed to conduct a thorough financial review before signing away billions of taxpayer dollars, the Trump administration is doing our due diligence to ensure we are utilizing taxpayer dollars to strengthen our national security, bolster affordable, reliable energy sources, and advance projects that generate the highest possible return on investment,” U.S. Energy Secretary Chris Wright said in a release.

Advocates for clean energy sharply criticized the DOE’s action:

  • Jessie Stolark, executive director of the Carbon Capture Coalition, said cancellation of the 24 DOE-funded projects “is a major step backward in the nationwide deployment of carbon management technologies. It is hugely disappointing to see these projects canceled — projects that had already progressed through a rigorous, months-long review process by technical experts at DOE.”
  • Iliana Paul, deputy director for the Sierra Club’s industrial transformation campaign, complained that the Trump administration “killed dozens of major investments in American competitiveness, good jobs, and cleaner air to support Trump’s tax cuts and line the pockets of billionaires. These projects were not just pro-climate; they were pro-jobs, pro-innovation, and pro-public health. American workers, fenceline communities, and forward-thinking companies have had the rug pulled out from under them.”
  • Conrad Schneider, senior U.S. director of the Clean Air Taskforce, said the DOE’s move “is bad for U.S. competitiveness in the global market and also directly contradictory to the administration’s stated goals of supporting energy production and environmental innovation. Canceling cutting-edge technology demonstrations, including support for carbon capture and storage projects, undercuts U.S. competitiveness at a time when there is a growing global market for cleaner industrial products and technologies.”
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston American Energy shares details on Baytown recycling facility, new innovation center

coming soon

Houston American Energy Corp. (NYSE: HUSA) plans to break ground on its new advanced recycling facility in the Cedar Port Industrial Park in Q4, the company shared in an announcement this week.

The company acquired a 25-acre, $8.5 million site for development in July from TGS Cedar Port Partners, which handles approximately 5 billion pounds of plastic resin annually. HUSA also plans to build the Abundia Innovation Center on the site.

HUSA named Houston-based Corvus Construction Company the design and construction partner on both projects.

“The site at Cedar Port is in the largest master-planned rail and barge served industrial park in the United States with direct access to the Houston Ship Channel and the Port of Houston,” Ed Gillespie, CEO of HUSA, said in a news release. “It provides robust logistical advantages for the transportation of both feedstock and our low-carbon drop-in fuels and chemical products. Critically, the region has a deep pool of engineering and operations talent. HUSA looks forward to working with local communities and adding economic growth in the Gulf Coast region.”

The new advanced recycling facility will convert plastic waste into pyrolysis oil and will serve as a hub for a five-year development plan designed to scale production capacity.

The facility will be built around New York-based Abundia Global Impact Group LLC’s technologies and proprietary pyrolysis process, which converts plastic and certified biomass waste into high-quality renewable fuels.

HUSA acquired AGIG this summer. At the time, the combined company shared that it planned to serve a multi-billion-dollar global demand for renewable fuels, Sustainable Aviation Fuel (SAF) and recycled chemical feedstocks.

The Abundia Innovation Center is planned to serve as a state-of-the-art research and development facility for the renewable energy sector, aiding in the commercial and technical validation of new technologies. HUSA previously announced that Nexus PMG, also based in Houston, will provide strategic support and guidance in the development of the innovation hub.

According to HUSA, the recycling facility and innovation center will “create the foundation for HUSA’s long-term vision to be a leader in the low-carbon fuels sector by driving collaborative innovation.”

UH researchers make breakthrough in cutting carbon capture costs

Carbon breakthrough

A team of researchers at the University of Houston has made two breakthroughs in addressing climate change and potentially reducing the cost of capturing harmful emissions from power plants.

Led by Professor Mim Rahimi at UH’s Cullen College of Engineering, the team released two significant publications that made significant strides relating to carbon capture processes. The first, published in Nature Communications, introduced a membraneless electrochemical process that cuts energy requirements and costs for amine-based carbon dioxide capture during the acid gas sweetening process. Another, featured on the cover of ES&T Engineering, demonstrated a vanadium redox flow system capable of both capturing carbon and storing renewable energy.

“These publications reflect our group’s commitment to fundamental electrochemical innovation and real-world applicability,” Rahimi said in a news release. “From membraneless systems to scalable flow systems, we’re charting pathways to decarbonize hard-to-abate sectors and support the transition to a low-carbon economy.”

According to the researchers, the “A Membraneless Electrochemically Mediated Amine Regeneration for Carbon Capture” research paper marked the beginning of the team’s first focus. The research examined the replacement of costly ion-exchange membranes with gas diffusion electrodes. They found that the membranes were the most expensive part of the system, and they were also a major cause of performance issues and high maintenance costs.

The researchers achieved more than 90 percent CO2 removal (nearly 50 percent more than traditional approaches) by engineering the gas diffusion electrodes. According to PhD student and co-author of the paper Ahmad Hassan, the capture costs approximately $70 per metric ton of CO2, which is competitive with other innovative scrubbing techniques.

“By removing the membrane and the associated hardware, we’ve streamlined the EMAR workflow and dramatically cut energy use,” Hassan said in the news release. “This opens the door to retrofitting existing industrial exhaust systems with a compact, low-cost carbon capture module.”

The second breakthrough, published by PhD student Mohsen Afshari, displayed a reversible flow battery architecture that absorbs CO2 during charging and releases it upon discharge. The results suggested that the technology could potentially provide carbon removal and grid balancing when used with intermittent renewables, such as solar or wind power.

“Integrating carbon capture directly into a redox flow battery lets us tackle two challenges in one device,” Afshari said in the release. “Our front-cover feature highlights its potential to smooth out renewable generation while sequestering CO2.”