HEXASpec was founded by Rice Ph.D. candidates Tianshu Zhai and Chen-Yang Lin, who are a part of Lilie’s 2024 Innovation Fellows program. Photo courtesy of Rice

A group of Rice University student-founded companies shared $100,000 of cash prizes at an annual startup competition — and three of those winning companies are focused on sustainable solutions.

Liu Idea Lab for Innovation and Entrepreneurship's H. Albert Napier Rice Launch Challenge, hosted by Rice earlier this month, named its winners for 2024. HEXASpec, a company that's created a new material to improve heat management for the semiconductor industry, won the top prize and $50,000 cash.

Founded by Rice Ph.D. candidates Tianshu Zhai and Chen-Yang Lin, who are a part of Lilie’s 2024 Innovation Fellows program, HEXASpec is improving efficiency and sustainability within the semiconductor industry, which usually consumes millions of gallons of water used to cool data centers. According to Rice's news release, HEXASpec's "next-generation chip packaging offer 20 times higher thermal conductivity and improved protection performance, cooling the chips faster and reducing the operational surface temperature."

A few other sustainability-focused startups won prizes, too. CoFlux Purification, a company that has a technology that breaks down PFAS using a novel absorbent for chemical-free water, won second place and $25,000, as well as the Audience Choice Award, which came with an additional $2,000.

Solidec, a company that's working on a platform to produce chemicals from captured carbon, and HEXASpec won Outstanding Achievement in Climate Solutions Prizes, which came with $1,000.

The NRLC, open to Rice students, is Lilie's hallmark event. Last year's winner was fashion tech startup, Goldie.

“We are the home of everything entrepreneurship, innovation and research commercialization for the entire Rice student, faculty and alumni communities,” Kyle Judah, executive director at Lilie, says in a news release. “We’re a place for you to immerse yourself in a problem you care about, to experiment, to try and fail and keep trying and trying and trying again amongst a community of fellow rebels, coloring outside the lines of convention."

This year, the competition started with 100 student venture teams before being whittled down to the final five at the championship. The program is supported by Lilie’s mentor team, Frank Liu and the Liu Family Foundation, Rice Business, Rice’s Office of Innovation, and other donors

“The heart and soul of what we’re doing to really take it to the next level with entrepreneurship here at Rice is this fantastic team,” Peter Rodriguez, dean of Rice Business, adds. “And they’re doing an outstanding job every year, reaching further, bringing in more students. My understanding is we had more than 100 teams submit applications. It’s an extraordinarily high number. It tells you a lot about what we have at Rice and what this team has been cooking and making happen here at Rice for a long, long time.”

———

This article originally ran on InnovationMap.

Peter Rodriguez, dean of Rice University's Jones Graduate School of Business, shares how the school is intrinsically and intentionally linked to the Houston energy community. Photo courtesy Annie Tao/Rice University

Why Rice University is 'deeply connected' to Houston's energy industry

power player

Houston is known as the energy capital of the world, and the industry is ingrained into Rice University's DNA — especially the university's business school.

"We are deeply connected — and have been for a long time," says Peter Rodriguez, dean of Rice University's Jones Graduate School of Business. "One of the five pillars of our strategy is to be the leading business school in the country for the studying and the advancement for the energy transition and decarbonization of the economy. We think we can be the premiere school for training people for this rapidly evolving field of energy and to promulgate great research."

One of the recent way the school has connect its student body to the Houston business community is through its recent Rice Energy Finance Summit, which took place last month. The student-led program has been ongoing for 15 years and gives students a chance to work with business leaders in the energy sector.

"It's aimed at something that's increasingly important now, which is thinking about energy transition and how do you really navigate the process," Rodriguez says. "It's an incredibly complex organization of many disprite units and government to pull off — and the finance side of that is particularly challenging."

This year, Rodriguez says the event had a packed house and even some wrap-around events, including a pitch competition. And he expects next year to be a continuation of that success.

Rodriguez shares more about what he's accomplished in his tenure as dean on the Houston Innovators Podcast.


———

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers develop strong biomaterial that could replace plastic

plastic problem

Collaborators from two Houston universities are leading the way in engineering a biomaterial into a scalable, multifunctional material that could potentially replace plastic.

The research was led by Muhammad Maksud Rahman, an assistant professor of mechanical and aerospace engineering at the University of Houston and an adjunct assistant professor of materials science and nanoengineering at Rice University. The team shared its findings in a study in the journal Nature Communications earlier this month. M.A.S.R. Saadi, a doctoral student in material science and nanoengineering at Rice, served as the first author.

The study introduced a biosynthesis technique that aligns bacterial cellulose fibers in real-time, which resulted in robust biopolymer sheets with “exceptional mechanical properties,” according to the researchers.

Biomaterials typically have weaker mechanical properties than their synthetic counterparts. However, the team was able to develop sheets of material with similar strengths to some metals and glasses. And still, the material was foldable and fully biodegradable.

To achieve this, the team developed a rotational bioreactor and utilized fluid motion to guide the bacteria fibers into a consistent alignment, rather than allowing them to align randomly, as they would in nature.

The process also allowed the team to easily integrate nanoscale additives—like graphene, carbon nanotubes and boron nitride—making the sheets stronger and improving the thermal properties.

“This dynamic biosynthesis approach enables the creation of stronger materials with greater functionality,” Saadi said in a release. “The method allows for the easy integration of various nanoscale additives directly into the bacterial cellulose, making it possible to customize material properties for specific applications.”

Ultimately, the scientists at UH and Rice hope this discovery could be used for the “next disposable water bottle,” which would be made by biodegradable biopolymers in bacterial cellulose, an abundant resource on Earth.

Additionally, the team sees applications for the materials in the packaging, breathable textiles, electronics, food and energy sectors.

“We envision these strong, multifunctional and eco-friendly bacterial cellulose sheets becoming ubiquitous, replacing plastics in various industries and helping mitigate environmental damage,” Rahman said the release.

America's only rare earth producer announces $500M agreement with Apple

Digging In

MP Materials, which runs the only American rare earths mine, announced a new $500 million agreement with tech giant Apple on Tuesday to produce more of the powerful magnets used in iPhones as well as other high-tech products like electric vehicles.

This news comes on the heels of last week’s announcement that the U.S. Defense Department agreed to invest $400 million in shares of the Las Vegas-based company. That will make the government the largest shareholder in MP Materials and help increase magnet production.

Despite their name, the 17 rare earth elements aren’t actually rare, but it’s hard to find them in a high enough concentration to make a mine worth the investment.

They are important ingredients in everything from smartphones and submarines to EVs and fighter jets, and it's those military applications that have made rare earths a key concern in ongoing U.S. trade talks. That's because China dominates the market and imposed new limits on exports after President Donald Trump announced his widespread tariffs. When shipments dried up, the two sides sat down in London.

The agreement with Apple will allow MP Materials to further expand its new factory in Texas to use recycled materials to produce the magnets that make iPhones vibrate. The company expects to start producing magnets for GM's electric vehicles later this year and this agreement will let it start producing magnets for Apple in 2027.

The Apple agreement represents a sliver of the company's pledge to invest $500 billion domestically during the Trump administration. And although the deal will provide a significant boost for MP Materials, the agreement with the Defense Department may be even more meaningful.

Neha Mukherjee, a rare earths analyst with Benchmark Mineral Intelligence, said in a research note that the Pentagon's 10-year promise to guarantee a minimum price for the key elements of neodymium and praseodymium will guarantee stable revenue for MP Minerals and protect it from potential price cuts by Chinese producers that are subsidized by their government.

“This is the kind of long-term commitment needed to reshape global rare earth supply chains," Mukherjee said.

Trump has made it a priority to try to reduce American reliance on China for rare earths. His administration is both helping MP Materials and trying to encourage the development of new mines that would take years to come to fruition. China has agreed to issue some permits for rare earth exports but not for military uses, and much uncertainty remains about their supply. The fear is that the trade war between the world’s two biggest economies could lead to a critical shortage of rare earth elements that could disrupt production of a variety of products. MP Materials can't satisfy all of the U.S. demand from its Mountain Pass mine in California’s Mojave Desert.

The deals by MP Materials come as Beijing and Washington have agreed to walk back on their non-tariff measures: China is to grant export permits for rare earth magnets to the U.S., and the U.S. is easing export controls on chip design software and jet engines. The truce is intended to ease tensions and prevent any catastrophic fall-off in bilateral relations, but is unlikely to address fundamental differences as both governments take steps to reduce dependency on each other.

Houston energy tech platform Molecule closes series B funding

energy software

Houston-based energy trading risk management (ETRM) software company Molecule has completed a successful series B round for an undisclosed amount, according to a July 16 release from the company.

The raise was led by Sundance Growth, a California-based software growth equity firm.

Sameer Soleja, founder and CEO of Molecule, said in the release that the funding will allow the company to "double down on product innovation, grow our team, and reach even more markets."

Molecule closed a $12 million Series A round in 2021, led by Houston-based Mercury Fund, and has since seen significant growth. The company, which was founded in 2012, has expanded its customer base across the U.S., U.K., Europe, Canada and South America, according to the release.

Additionally, it has launched two new modules of its software platform. Its Hive module, which debuted in 2022, enables clients to manage their energy portfolio and renewable credits together in one scalable platform. It also introduced Elektra, an add-on for the power market to its platform, which allows for complex power market trading.

"Four years ago, we committed to becoming the leading platform for energy trading," Soleja said in the release. "Today, our customers are managing complex power and renewable portfolios across multiple jurisdictions, all within Molecule.”

Molecule is also known for its data-as-a-lake platform, Bigbang, which enables energy ETRM and commodities trading and risk management (CTRM) customers to automatically import trade data from Molecule and then merge it with various sources to conduct queries and analysis.

“Molecule is doing something very few companies in energy tech have done: combining mission-critical depth with cloud-native, scalable technology,” Christian Stewart, Sundance Growth managing director, added in the statement. “Sameer and his team have built a platform that’s not only powerful, but user-friendly—a rare combination in enterprise software. We’re thrilled to partner with Molecule as they continue to grow and transform the energy trading and risk management market.”