How did the IRA affect energy transition project development? Experts discussed the positive impacts — as well as the challenges still to overcome. Photo courtesy of Renewable Energy Alliance Houston

It's been officially a year since the Inflation Reduction Act was enacted, so it's no surprise that looking at the IRA's impact dominated the discussion at a recent industry event.

The second annual Renewable Energy Leadership Conference, presented by Renewable Energy Alliance Houston and Rice Business Executive Education, featured thought leadership from 20 experts on Tuesday, August 22. While some panels zeroed in on hiring and loan options for energy transition companies, the day's program kicked off with a couple panels looking both back and forward on the IRA.

When looking at the IRA's impact, the experts identified a few key things. Here's what they said at the conference.

Going beyond tax credits and regulation

Greg Matlock, EY's global energy and resources industry tax leader, kicked off the IRA discussion after John Berger, CEO of Sunnova, gave a keynote address.

Matlock set the scene for the IRA, explaining that previous legislation incentivizing clean energy changes mostly stayed within regulation and tax credits. Credits as a tax policy fail to incentivize organizations that are, for various reasons, are tax exempt or are already paying insignificant taxes. The fundamental switch of the IRA was to a "want to" rather than a "have to."

"Everyone has had aspirations, but with aspirations without capital, it's hard to get movement," Matlock says. "But what the IRA did was create a liquidity in the market and added access to an investor base. Now you're pairing aspirations and capital, and now you're seeing movement in the market."

The IRA, Matlock continues, also got the ball rolling on expanding requirements for tax incentives. Previously, a specific technology has to be clearly identified to be qualified for a credit. Moving forward, the IRA improved this qualification process and in the future, there will be be technology neutral incentives.

One thing Matlock also highlighted was the limitations of tax credits — dollar for dollar credit.

"Two years ago, if you called an organization that was tax exempt (about) a project that generates tax credits, why would that want that?" Matlock says. "For the first time, you can sell federal tax credits — not all of them — for cash and tax free to businesses who are paying taxes."

Explaining that there are limitations, Matlock says this process had a significant impact encouraging movement in this space — especially from surprising sources.

"We're seeing companies that have absolutely no connectivity to our energy industry making investments through the purchase of tax credits to fund the development of projects," Matlock says.

A focus on carbon capture and hydrogen

Matlock continues to explain how carbon capture and hydrogen became two case studies for the impact of the IRA.

Prior to the IRA, over 16 countries incentivized hydrogen production, he explains, and the United States was not one of them.

"With the signing of the IRA, we went from the worst to the first," Matlock says.

Carbon capture development was directed more at traditional energy industries. The IRA enactment represented a switch for these companies from regulatory moves to incentivization, which has been more effective in general, Matlock says.

Over the past year, according to the American Clean Power Association, more than $271 billion in investment in clean energy projects has occurred since the IRA was enacted. When it comes to jobs, over 170,000 clean energy jobs have been announced since the IRA.

Problematic permitting and pricing volatility 

In a subsequent panel, the three thought leaders looked at the IRA a bit more critically. While the IRA spurred momentum, it also shined a spotlight on some of the industry's challenges.

"The IRA for developers has been very positive. It provided certainty and allowed developers and investors alike to plan long term," says Omar Aboudaher, senior vice president of development for Leeward Renewable Energy. "With that comes challenges, including exacerbating some existing problems with permitting."

Aboudaher explains that the IRA-inspired burst of projects has caused a lot more permits for the increase of development. And, he adds, there's not a concentrated effort. It's happening in silos on the various levels of government.

"On the permitting side, there's a big need to streamline permitting," Aboudaher says. "In some parts of the country, it can take 6 to 10 years to permit your project."

On the investor side, it's also a problem, adds Fred Day, managing director of investments at Brookfield Asset Management.

"Even though we have this IRA, a lack of permitting reform does create a bottleneck," he says.

Another challenge is a disconnect between supply and demand. While the IRA has incentivized solar energy generation per hour of energy, meaning that its cheaper than ever to make energy via solar panels, there's not yet the demand infrastructure for this energy. This incentivization structure has already been in place for wind power.

"I think it's going to be a real problem. It's a real problem with wind today," Doug Moorehead, COO of Broad Reach Power, says, explaining that there's volatility in pricing. "When the wind is high, prices are really low. When wind is low, prices are high."

All of this is leading to an imbalance of market demand and supply, he continues. Jessica Adkins, partner at Sidley Austin LLP and moderator, adds that there's built in volatility for solar since solar energy is confined to the time of day when the sun is out.

"Any time you're incentivize to produce regardless of demand, it's going to be an issue," Moorehead says.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Greentown and partners name 10 startups to carbontech accelerator

new cohort

The Carbon to Value Initiative (C2V Initiative)—a collaboration between Greentown Labs, NYU Tandon School of Engineering's Urban Future Lab and Fraunhofer USA—has announced 10 startup participants to join the fifth cohort of its carbontech accelerator.

The six-month accelerator aims to help cleantech startups advance their commercialization efforts through access to the C2V Initiative’s Carbontech Leadership Council (CLC). The invitation-only council consists of corporate and nonprofit leaders from organizations like Shell, TotalEnergies, XPRIZE, L’Oréal and others who “foster commercialization opportunities and identify avenues for technology validation, testing, and demonstration,” according to a release from Greentown

“The No. 1 reason startups engage with Greentown is to find customers, grow their businesses, and accelerate impact—and the Carbon to Value Initiative delivers exactly that,” Georgina Campbell Flatter, CEO of Greentown, said in a news release. “It’s a powerful example of how meaningful engagement between entrepreneurs and industry turns innovation into commercial traction.”

The C2V Initiative received more than 100 applications from 33 countries, representing a variety of carbontech innovations. The 10 startups chosen for the 2025 fifth cohort include:

  • Cambridge, Massachusetts-based Sora Fuel, which integrates direct-air capture with direct conversion of the captured carbon into syngas for production of sustainable aviation fuel
  • Brooklyn-based Arbon, which develops a humidity-swing carbon-capture solution by capturing CO₂ from the air or point-source without heat or pressure
  • New York-based Cella Mineral Storage, which works to develop subsurface mineralization technology with integrated software, enabling new ways to sequester CO2 underground
  • Germany-based ICODOS, which helps transform emissions into value through a point-source carbon capture and methanol synthesis process in a single, modularized system
  • Vancouver-based Lite-1, which uses advanced biomanufacturing processes to produce circular colourants for use in textiles, cosmetics and food
  • London-based Mission Zero Technologies, which has developed and deployed an electrified, direct-air carbon capture solution that employs both liquid-adsorption and electrochemical technologies
  • Kenya-based Octavia Carbon, which develops a solid-adsorption-based, direct-air carbon capture solution that utilizes geothermal heat
  • California-based Rushnu, which combines point-source carbon capture with chemical production, turning salt and CO2 into chlorine-based chemicals and minerals
  • Brooklyn-based Turnover Labs, which develops modular electrolyzers that transform raw, industrial CO2 emissions into chemical building blocks, without capture or purification
  • Ontario-based Universal Matter, which develops a Flash Joule Heating process that converts carbon waste such as end-of-life plastics, tires or industrial waste into graphene

The C2V Initiative is based on Greentown Go, Greentown’s open-innovation program. The C2V Initiative has supported 35 startups that have raised over $600 million in follow-on funding.

Read about the 2024 cohort here.

CenterPoint gets go-ahead for $2.9B upgrade of Houston grid

grid resiliency

Texas utility regulators have given the green light for Houston-based CenterPoint Energy to spend $2.9 billion on strengthening its Houston-area electric grid to better withstand extreme weather.

The cost of the plan is nearly $3 billion below what CenterPoint initially proposed to the Public Utility Commission of Texas.

In early 2025, CenterPoint unveiled a $5.75 billion plan to upgrade its Houston-area power system from 2026 through 2028. But the price tag dropped to $2.9 billion as part of a legal settlement between CenterPoint and cities in the utility’s service area.

Sometime after the first quarter of next year, CenterPoint customers in the Houston area will pay an extra $1 a month for the next three years to cover costs of the resiliency plan. CenterPoint serves 2.9 million customers in a 12-county territory anchored by Houston.

CenterPoint says the plan is part of its “commitment to building the most resilient coastal grid in the country.”

A key to improving CenterPoint’s local grid will be stepping up management of high-risk vegetation (namely trees), which ranks as the leading cause of power outages in the Houston area. CenterPoint says it will “go above and beyond standard vegetation management by implementing an industry-leading three-year trim cycle,” clearing vegetation from thousands of miles of power lines.

The utility company says its plan aims to prevent Houston-area power outages in case of hurricanes, floods, extreme temperatures, tornadoes, wildfires, winter storms, and other extreme weather events.

CenterPoint says the plan will:

  • Improve systemwide resilience by 30 percent
  • Expand the grid’s power-generating capacity. The company expects power demand in the Houston area to grow 2 percent per year for the foreseeable future.
  • Save about $50 million per year on storm cleanup costs
  • Avoid outages for more than 500,000 customers in the event of a disaster like last year’s Hurricane Beryl
  • Provide 130,000 stronger, more storm-resilient utility poles
  • Put more than 50 percent of the power system underground
  • Rebuild or upgrade more than 2,200 transmission towers
  • Modernize 34,500 spans of underground cables

In the Energy Capital of the World, residents “expect and deserve an electric system that is safe, reliable, cost-effective, and resilient when they need it most. We’re determined to deliver just that,” Jason Wells, president and CEO of CenterPoint, said in January.

Solidec partners with Australian company for clean hydrogen peroxide pilot​

rare earth pilot

Solidec has partnered with Australia-based Lynas Rare Earth, an environmentally responsible producer of rare earth oxides and materials, to reduce emissions from hydrogen peroxide production.

The partnership marks a milestone for the Houston-based clean chemical manufacturing startup, as it would allow the company to accelerate the commercialization of its hydrogen peroxide generation technology, according to a news release.

"This collaboration is a major milestone for Solidec and a catalyst for sustainability in rare earths," Yang Xia, co-founder and CTO of Solidec, said in the release. "Solidec's technology can reduce the carbon footprint of hydrogen peroxide production by up to 90%. By combining our generators with the scale of a global leader in rare earths, we can contribute to a more secure, sustainable supply of critical minerals."

Through the partnership, Solidec will launch a pilot program of its autonomous, on-site generators at Lynas's facility in Australia. Solidec's generators extract molecules from water and air and convert them into carbon emission-free chemicals and fuels, like hydrogen peroxide. The generators also eliminate the need for transport, storage and permitting, making for a simpler, more efficient process for producing hydrogen peroxide than the traditional anthraquinone process.

"Hydrogen peroxide is essential to rare earth production, yet centralized manufacturing adds cost and complexity," Ryan DuChanois, co-founder and CEO of Solidec, added in the release. "By generating peroxide directly on-site, we're reinventing the chemical supply chain for efficiency, resilience, and sustainability."

The companies report that the pilot is expected to generate 10 tons of hydrogen peroxide per year.

If successful, the pilot would serve as a model for large-scale deployments of Solidec's generators across Lynas' operations—and would have major implications for the high-performance magnet, electric vehicles, wind turbine, and advanced electronics industries, which rely on rare earth elements.

"This partnership with Solidec is another milestone on the path to achieving our Towards 2030 vision," Luke Darbyshire, general manager of R&I at Lynas, added. "Working with Solidec allows us to establish transformative chemical supply pathways that align with our innovation efforts, while contributing to our broader vision for secure, sustainable rare earth supply chains."