Some of those counties affected include production hot spots within the San Juan Basin in northwestern New Mexico and the Permian Basin, which straddles the New Mexico-Texas line. Photo via Getty Images

The New Mexico Court of Appeals has upheld regulations aimed at cracking down on emissions in one of the nation’s top-producing oil and gas states.

The case centered on a rule adopted in 2022 by state regulators that called for curbing the pollutants that chemically react in the presence of sunlight to create ground-level ozone, commonly known as smog. High ozone levels can cause respiratory problems, including asthma and chronic bronchitis.

Democratic Gov. Michelle Lujan Grisham's administration has long argued that the adoption of the ozone precursor rule along with regulations to limit methane emissions from the industry were necessary to combat climate change and meet federal clean air standards.

New Mexico Environment Secretary James Kenney said the court's decision on Wednesday affirmed that the rule was properly developed and there was substantial evidence to back up its approval by regulators.

“These rules aren’t going anywhere,” Kenney said in a statement to The New Mexican, suggesting that the industry stop spending resources on legal challenges and start working to comply with New Mexico's requirements.

The Independent Petroleum Association of New Mexico had argued in its appeal that the rule disproportionately affected independent operators.

“The administration needs to stop its ‘death by a thousand cuts’ hostility to the smaller, family-owned, New Mexico-based operators,” the group's executive director, Jim Winchester, said in an email to the newspaper.

The group is considering its legal options.

Under the rule, oil and gas operators must monitor emissions for smog-causing pollutants — nitrogen oxides and volatile organic compounds — and regularly check for and fix leaks.

The rule applies to eight counties — Chaves, Doña Ana, Eddy, Lea, Rio Arriba, Sandoval, San Juan and Valencia — where ozone pollutants have reached at least 95% of the federal ambient air quality standard. Some of those counties include production hot spots within the San Juan Basin in northwestern New Mexico and the Permian Basin, which straddles the New Mexico-Texas line.

The industry group had argued that Chaves and Rio Arriba counties shouldn’t be included. The court disagreed, saying those counties are located within broader geographic regions that did hit that 95% threshold.

Ten-year-old radioactive waste is currently being debated about by New Mexico officials. Photo via Getty Images

Texas, New Mexico officials contemplate what to do with nuclear waste

in debate

Federal officials gathered Tuesday in southern New Mexico to mark the 25th anniversary of the nation’s only underground repository for radioactive waste resulting from decades of nuclear research and bomb making.

Carved out of an ancient salt formation about half a mile (800 meters) deep, the Waste Isolation Pilot Plant outside Carlsbad has taken in around 13,850 shipments from more than a dozen national laboratories and other sites since 1999.

The anniversary comes as New Mexico raises concerns about the federal government’s plans for repackaging and shipping to WIPP a collection of drums filled with the same kind of materials that prompted a radiation release at the repository in 2014.

That mishap contaminated parts of the underground facility and forced an expensive, nearly three-year closure. It also delayed the federal government’s multibillion-dollar cleanup program and prompted policy changes at labs and other sites across the U.S.

Meanwhile, dozens of boxes containing drums of nuclear waste that were packed at the Los Alamos National Laboratory to be stored at WIPP were rerouted to Texas, where they've remained ever since at an above-ground holding site.

After years of pressure from Texas environmental regulators, the U.S. Department of Energy announced last year that it would begin looking at ways to treat the waste so it could be safely transported and disposed of at WIPP.

But the New Mexico Environment Department is demanding more safety information, raising numerous concerns in letters to federal officials and the contractor that operates the New Mexico repository.

“Parking it in the desert of West Texas for 10 years and shipping it back does not constitute treatment,” New Mexico Environment Secretary James Kenney told The Associated Press in an interview. “So that’s my most substantive issue — that time does not treat hazardous waste. Treatment treats hazardous waste.”

The 2014 radiation release was caused by improper packaging of waste at Los Alamos. Investigators determined that a runaway chemical reaction inside one drum resulted from the mixing of nitrate salts with organic kitty litter that was meant to keep the interior of the drum dry.

Kenney said there was an understanding following the breach that drums containing the same materials had the potential to react. He questioned how that risk could have changed since the character and composition of the waste remains the same.

Scientists at Sandia National Laboratories in Albuquerque were contracted by the DOE to study the issue. They published a report in November stating that the federal government's plan to repackage the waste with an insulating layer of air-filled glass micro-bubbles would offer “additional thermal protection."

The study also noted that ongoing monitoring suggests that the temperature of the drums is decreasing, indicating that the waste is becoming more stable.

DOE officials did not immediately answer questions about whether other methods were considered for changing the composition of the waste, or what guarantees the agency might offer for ensuring another thermal reaction doesn't happen inside one of the drums.

The timetable for moving the waste also wasn't immediately clear, as the plan would need approval from state and federal regulators.

Kenney said some of the state's concerns could have been addressed had the federal government consulted with New Mexico regulators before announcing its plans. The state in its letters pointed to requirements under the repository's permit and federal laws for handling radioactive and hazardous wastes.

Don Hancock, with the Albuquerque-based watchdog group Southwest Research and Information Center, said shipments of the untreated waste also might not comply with the Nuclear Regulatory Commission's certification for the containers that are used.

“This is a classic case of waste arriving somewhere and then being stranded — 10 years in the case of this waste,” Hancock said. “That’s a lesson for Texas, New Mexico, and any other state to be sure that waste is safe to ship before it’s allowed to be shipped.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston companies scoop up $31 million in funds from DOE, EPA methane emissions program

fresh funds

The U.S. Department of Energy and the U.S. Environmental Protection Agency announced the selection of seven projects from Houston companies to receive funding through the Methane Emissions Reduction Program.

The projects are among 43 others nationwide, including 12 from Texas, that reduce, monitor, measure, and quantify methane emissions from the oil and gas sector. The DOE and EPA awarded $850 million in total through the program.

The Houston companies picked up $31.7 million in federal funding through the program in addition to more than $9.5 million in non-federal dollars.

“I’m excited about the opportunities these will create internally but even more so the creation of jobs and training opportunities for the communities in which we work,” Scott McCurdy, Encino Environmental Services CEO, said in a news release. His company received awards for two projects.

“These projects will allow us to further support and strengthen the U.S. Energy industry’s ability to deliver clean, reliable, and affordable energy globally,” he added.

The Houston-area awards included:

DaphneTech USA LLC

Total funding: $5.8 million (approximately $4.5 million in federal, $1.3 million in non-federal)

The award was granted for the company’s Daphne and Williams Methane Slip Abatement Plasma-Catalyst Scale-Up project. Daphne will study how its SlipPure technology, a novel exhaust gas cleaning system that abates methane and exhaust gas pollution from natural gas-fueled engines, can be economically viable across multiple engine types and operating conditions.

Baker Hughes Energy Transition LLC 

Total funding: $7.47 million (approximately $6 million in federal, $1.5 million in non-federal)

The award was granted for the company’s Advancing Low Cost CH4 Emissions Reduction from Flares through Large Scale Deployment of Retrofittable and Adaptive Technology project. The project aims to develop a scalable, integrated methane emissions reduction system for flares based on optical gas imaging and estimation algorithms.

Encino Environmental Services

Total funding: $15.17 million (approximately $11 million in federal, $4.17 million in non-federal)

The award was granted for two projects. The Advanced Methane Reduction System: Integrating Infrared and Visual Imaging to Assess Net Heating Value at the Combustion Zone and Determine Combustion Efficiency to Enhance Flaring Performance project aims to develop and deploy an advanced continuous emissions monitoring system. It’s Advancing Methane Emissions Reduction through Innovative Technology project will develop and deploy a technology using sensors and composite materials to address emissions originating in storage tanks.

Envana Software Solutions

Total funding: $5.26 million (approximately $4.2 million in federal, $1 million in non-federal)

The award was granted for the company’s Leak Detection and Reduction Software to Identify Methane Emissions and Trigger Mitigation at Oil and Gas Production Facilities Based on SCADA Data project. It aims to improve its Recon software for monitoring methane emissions and develop partnerships with local universities and organizations.

Capwell Services Inc.

Total funding: $4.19 million (approximately $3.3 million in federal, $837,000 in non-federal)

The award was granted for its Methane Emissions Abatement Technology for Low-Flow and Intermittent Emission Sources project. It aims to to deploy and field-test a methane abatement unit and improve air quality and health outcomes for communities near production facilities and establish field technician internships for local residents.

Blue Sky Measurements 

Total funding: $3.41 million (approximately $2.7 million in federal, $683,000 in non-federal)

The award was granted for its Field Validation of Novel Fixed Position Optical Sensor for Fugitive Methane Emission Detection Quantification and Location with Real-Time Notification for Rapid Mitigation project. It aims to field test an optical sensing technology at six well sites in the Permian Basin.

Southern Methodist University, The University of Texas at Austin, Texas A&M Engineering Experiment Station and Hyliion Inc. were other Texas-based organizations to earn awards. See the full list of projects here.

Texas university's 'WaterHub' will dramatically reduce water usage by 40%

Sustainable Move

A major advancement in sustainability is coming to one Texas university. A new UT WaterHub at the University of Texas at Austin will be the largest facility of its kind in the U.S. and will transform how the university manages its water resources.

It's designed to work with natural processes instead of against them for water savings of an estimated 40 percent. It's slated for completion in late 2027.

The university has had an active water recovery program since the 1980s. Still, water is becoming an increasing concern in Austin. According to Texas Living Waters, a coalition of conservation groups, Texas loses enough water annually to fill Lady Bird Lake roughly 89 times over.

As Austin continues to expand and face water shortages, the region's water supply faces increased pressure. The UT WaterHub plans to address this challenge by recycling water for campus energy operations, helping preserve water resources for both the university and local communities.

The 9,600-square-foot water treatment facility will use an innovative filtration approach. To reduce reliance on expensive machinery and chemicals, the system uses plants to naturally filter water and gravity to pull it in the direction it needs to go. Used water will be gathered from a new collection point near the Darrell K Royal Texas Memorial Stadium and transported to the WaterHub, located in the heart of the engineering district. The facility's design includes a greenhouse viewable to the public, serving as an interactive learning space.

Beyond water conservation, the facility is designed to protect the university against extreme weather events like winter storms. This new initiative will create a reliable backup water supply while decreasing university water usage, and will even reduce wastewater sent to the city by up to 70 percent.

H2O Innovation, UT’s collaborator in this project, specializes in water solutions, helping organizations manage their water efficiently.

"By combining cutting-edge technology with our innovative financing approach, we’re making it easier for organizations to adopt sustainable water practices that benefit both their bottom line and the environment, paving a step forward in water positivity,” said H2O Innovation president and CEO Frédéric Dugré in a press release.

The university expects significant cost savings with this project, since it won't have to spend as much on buying water from the city or paying fees to dispose of used water. Over the next several years, this could add up to millions of dollars.

---

A version of this story originally appeared on our sister site, CultureMap Austin.

Report: Texas solar power, battery storage helped stabilize grid in summer 2024, but challenges remain

by the numbers

Research from the Federal Reserve Bank of Dallas shows that solar power and battery storage capacity helped stabilize Texas’ electric grid last summer.

Between June 1 and Aug. 31, solar power met nearly 25 percent of midday electricity demand within the Electric Reliability Council of Texas (ERCOT) power grid. Rising solar and battery output in ERCOT assisted Texans during a summer of triple-digit heat and record load demands, but the report fears that the state’s power load will be “pushed to its limits” soon.

The report examined how the grid performed during more demanding hours. At peak times, between 11 a.m. and 2 p.m. in the summer of 2024, solar output averaged nearly 17,000 megawatts compared with 12,000 megawatts during those hours in the previous year. Between 6 p.m. and 9 p.m., discharge from battery facilities averaged 714 megawatts in 2024 after averaging 238 megawatts for those hours in 2023. Solar and battery output have continued to grow since then, according to the report.

“Batteries made a meaningful contribution to what those shoulder periods look like and how much scarcity we get into during these peak events,” ERCOT CEO Pablo Vegas said at a board of directors conference call.

Increases in capacity from solar and battery-storage power in 2024 also eclipsed those of 2023. In 2023 ECOT added 4,570 megawatts of solar, compared to adding nearly 9,700 megawatts in 2024. Growth in battery storage capacity also increased from about 1,500 megawatts added in 2023 to more than 4,000 megawatts added in 2024. Natural gas capacity also saw increases while wind capacity dropped by about 50 percent.

Texas’ installation of utility-scale solar surpassed California’s in the spring of last year, and jumped from 1,900 megawatts in 2019 to over 20,000 megawatts in 2024 with solar meeting about 50 percent of Texas' peak power demand during some days.

While the numbers are encouraging, the report states that there could be future challenges, as more generating capacity will be required due to data center construction and broader electrification trends. The development of generating more capacity will rely on multiple factors like price signals and market conditions that invite more baseload and dispatchable generating capacity, which includes longer-duration batteries, and investment in power purchase agreements and other power arrangements by large-scale consumers, according to the report.

Additionally, peak demand during winter freezes presents challenges not seen in the summer. For example, in colder months, peak electricity demand often occurs in the early morning before solar energy is available, and it predicts that current battery storage may be insufficient to meet the demand. The analysis indicated a 50% chance of rolling outages during a cold snap similar to December 2022 and an 80% chance if conditions mirror the February 2021 deep freeze at the grid’s current state.

The report also claimed that ERCOT’s energy-only market design and new incentive structures, such as the Texas Energy Fund, do not appear to be enough to meet the predicted future magnitude and speed of load growth.

Read the full report here.