At the annual, SUPER DUG Conference & Exhibition 2024 in Fort Worth last week, Texas energy executives weighed in on the progress of the energy transition. Photo by Lindsey Ferrell

Woven in between reflections on the most active consolidation market in recent history, an underlying theme emerged from Hart Energy’s SUPER DUG Conference & Exhibition 2024 in Fort Worth last week. Executives, investors, and analysts conveyed admiration for the emissions reductions achieved across the shales while continuing to meet the growing demand for natural gas.

However, concern for continued investment echoed this praise, as many expressed the need for increased investment to support a world of flourishing population, economics, and technology.

Marshall Adkins, head of energy for Raymond James, shared an analogy demonstrating the energy demand impact from advancements in technology, most notably those sprouting from the widespread adoption of artificial intelligence. Adkins explained that a minimal whole-home generator consumes about 8,500 watts of power; to keep air conditioning, the washing machine, and garage door working results in a pull of approximately 14,000 watts. One single chip from NVIDIA requires that same 14,000 watts plus another 150 percent power for cooling, totaling approximately 35,000 watts — about the same as would completely power an average home as if there were no disruption in supply.

While this volume of power consumption seems hefty, consider that NVIDIA sold over half a million chips in a single quarter last year, and the effect starts to multiply exponentially. And while development of solar and wind power sources will replace most, if not all, of the current energy produced from coal, the stability of the power grid relies predominantly on the continuous stream of natural gas. That is, if the stream of investment into developing and expanding natural gas continues to grow in parallel.

Reflecting on the expectation from public and private investors, as well as upcoming talent, to embrace meaningful advancements in ESG, Will Van Loh, CEO of Quantum Energy Partners, shared the business benefit of greener practices.

“Switching your frac fleet from running diesel to natural gas, we saved one of our companies in the Haynesville half a million dollars per well and reduced GHG by 70 percent. Make a bunch of money and do good for the environment – (that’s a) pretty good deal,” Van Loh told Hart Energy’s editor-in-chief for Oil & Gas Investor, Deon Daugherty.

For decades, the industry has pursued increasingly eco-friendly habits, but the requirements of ESG reporting make it more visible to the rest of the world. Permian Operators, which produce almost half of all US daily oil volume, cited specific strides made in reducing emissions and operating more cleanly during their respective presentations:

  • Leadership from Diamondback Energy spoke about adopting the use of clear drilling fluids in lieu of oil-based mud, resulting in faster drilling times and cleaner operations. The technique came along with the acquisition of QEP Resources in 2021 and reflects the company’s commitment to remaining humble in its pursuit of more efficient and more environmentally beneficial methodologies.
  • Nick McKenna, vice president of the Midland Basin for ConocoPhillips praised their Lower48 team for reducing gas flaring by 80 percent since 2019 while also increasing the use of recycled water over 3x in that same 5-year horizon.
  • Clark Edwards, senior vice president of Development for BPX, cited achieving 95 percent electrification of their Permian well set as of the end of 2023. Building and installing their own microgrid – a practice repeated by numerous operators throughout the Basin, where public infrastructure lags far behind private entity needs – added enough megawatts to their operation to allow BPX to run drilling rigs completely independent of an already strained public grid.

In addition to reducing diesel usage, flaring, and dependence on the public grid for electricity, water management stays a top economic and ecological concern for shale operators all over the United States. While a compelling case of "have and have-not" dominated the shale water business over the last decade-plus, savvy operators increasingly embrace a mindset that water disposal should remain a choice of last resort. Companies like WaterBridge, a Joint Venture with Devon Energy, and Deep Blue, a joint venture with Diamondback Energy, help bring clean and recycled water to areas with shortages, both in and outside of the industry.

As Kaes Van’t Hof, president and CFO of Diamondback Energy, said, “The Midland Basin is now recycling as much water as it possibly can. Eventually it’s going to be about, ‘Water going downhole into a disposal well is the last option.’ Can you recycle it? Can you bring it somewhere else, evaporate it? We’re starting start some early de-sal[ination] tests in the Spanish Trail near the airport. Eventually, can we tell the story that we sell freshwater back to water the golf courses of Midland?”

The Energy Transition steams ahead, but pragmatic observations remind us that oil and gas make up approximately 60 percent of the energy supply today – a volume not easily replaced by any other source completely in the next few years. However, the overwhelming support for delivering the best barrel with the lowest carbon intensity possible permeated Hart Energy’s SUPER DUG Conference & Exhibition 2024.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston renewables developer and Google agree to second solar collaboration

power purchase

EnergyRe, a developer of large-scale renewable energy projects with headquarters in Houston and New York, has signed a renewable energy agreement that will allow Google to invest in and purchase renewable energy credits (RECs) from its projects under development in South Carolina.

Google will be able to pull from energyRe’s portfolio of more than 600 megawatts of new solar and solar storage projects in the state.

The agreement marks the second partnership between the companies. Last year, energyRe and Google signed a 12-year power purchase agreement in which Google would purchase renewable energy from a 435-megawatt solar project. EnergyRe would supply electricity and RECs generated from the solar project to Google to power the equivalent of more than 56,000 homes.

"Strengthening the grid by deploying more reliable and clean energy is crucial for supporting the digital infrastructure that businesses and individuals depend on," Amanda Peterson Corio, head of data center energy at Google, said in a news release. "Our collaboration with energyRe will help power our data centers and the broader economic growth of South Carolina."

EnergyRe's work includes developing high-voltage transmission, onshore and offshore wind, large-scale solar, distributed generation and storage assets in markets around the United States. Its national onshore utility-scale portfolio includes 1,520 megawatts of contracted solar assets and 398 megawatt-hours of contracted battery storage assets.

"This agreement is a milestone in energyRe's mission to develop innovative and impactful clean energy solutions for the future," Miguel Prado, CEO of energyRe, added in the news release."We're honored to partner with Google to help advance their ambitious sustainability and decarbonization objectives while delivering dependable, locally sourced clean energy to meet growing energy demands."

Google aims to achieve net-zero carbon emissions across its operations and value chain by 2030.

Engie partners on major Texas, California battery storage portfolio

power partners

Houston’s Engie North America has partnered with New York-based CBRE Investment Management on a 2.4-gigawatt portfolio of battery storage assets in Texas and California.

The portfolio consists of 31 projects operating in the Electric Reliability Council of Texas (ERCOT) and California Independent System Operator (CAISO) territories. According to a company statement, the transaction represents one of Engie’s largest operating portfolio partnerships in the U.S.

“We are delighted that ENGIE and CBRE IM are partnering in this industry-leading transaction, supporting 2.4 GW of storage that will support the growing demand for power in Texas and California,” Dave Carroll, Chief Renewables Officer and SVP, ENGIE North America, said in the news release.

The deal is also one of the sector’s largest sales completed to date. Engie will retain a controlling share in the portfolio and will continue to operate and manage the assets.

“The scale of this portfolio reflects ENGIE’s commitments to meeting the energy needs of the U.S. and increasing the resilience of the ERCOT and CAISO grids,” Carroll added in the news release. “CBRE IM’s investment reflects their confidence in ENGIE’s proven track record in developing, building, operating and financing renewable assets, both in North America and globally.”

In North America, ENGIE currently has more than 11 gigawatts of renewable production and battery storage in operation or construction. Last year, Engie added 4.2 gigawatts of renewable energy capacity worldwide, bringing the total capacity to 46 gigawatts as of December 31. It also recently made a preliminary deal to supply wind power to a Cipher Mining data center in Texas.

As of March 31, 2025, CBRE IM had $149.1 billion in assets under management and operated in 20 countries.

“We are excited to partner with ENGIE on this high-quality, scaled battery storage portfolio with a strong operating track record,” Robert Shaw, managing director, private infrastructure strategies at CBRE Investment Management, said in the release.

Houston researchers make breakthrough on electricity-generating bacteria

new findings

New research from Rice University that merges biology with electrochemistry has uncovered new findings on how some bacteria generate electricity.

Led by Caroline Ajo-Franklin, a Rice professor of biosciences and the director of the Rice Synthetic Biology Institute, the team published its findings in the journal Cell in April. The report showed how some bacteria use compounds called naphthoquinones, rather than oxygen, to transfer electrons to external surfaces in a process known as extracellular respiration. In other words, the bacteria are exhale electricity as they breathe.

This process has been observed by scientists for years, but the Rice team's deeper understanding of its mechanism is a major breakthrough, with implications for the clean energy and industrial biotechnology sectors, according to the university.

“Our research not only solves a long-standing scientific mystery, but it also points to a new and potentially widespread survival strategy in nature,” Ajo-Franklin, said in a news release.

The Rice team worked with the University of California, San Diego's Palsson lab to simulate bacterial growth using advanced computer modeling. The simulations modeled oxygen-deprived environments that were rich in conductive surfaces, and found that bacteria could sustain themselves without oxygen. Next, they confirmed that the bacteria continued to grow and generate electricity when placed on conductive materials.

The team reports that the findings "lay the groundwork for future technologies that harness the unique capabilities" of these bacteria with "far-reaching practical implications." The team says the findings could lead to significant improvements in wastewater treatment and biomanufacturing. They could also allow for better bioelectronic sensors in oxygen-deprived environments, including deep-sea vents, the human gut and in deep space.

“Our work lays the foundation for harnessing carbon dioxide through renewable electricity, where bacteria function similarly to plants with sunlight in photosynthesis,” Ajo-Franklin added in the release. “It opens the door to building smarter, more sustainable technologies with biology at the core.”