At the annual, SUPER DUG Conference & Exhibition 2024 in Fort Worth last week, Texas energy executives weighed in on the progress of the energy transition. Photo by Lindsey Ferrell

Woven in between reflections on the most active consolidation market in recent history, an underlying theme emerged from Hart Energy’s SUPER DUG Conference & Exhibition 2024 in Fort Worth last week. Executives, investors, and analysts conveyed admiration for the emissions reductions achieved across the shales while continuing to meet the growing demand for natural gas.

However, concern for continued investment echoed this praise, as many expressed the need for increased investment to support a world of flourishing population, economics, and technology.

Marshall Adkins, head of energy for Raymond James, shared an analogy demonstrating the energy demand impact from advancements in technology, most notably those sprouting from the widespread adoption of artificial intelligence. Adkins explained that a minimal whole-home generator consumes about 8,500 watts of power; to keep air conditioning, the washing machine, and garage door working results in a pull of approximately 14,000 watts. One single chip from NVIDIA requires that same 14,000 watts plus another 150 percent power for cooling, totaling approximately 35,000 watts — about the same as would completely power an average home as if there were no disruption in supply.

While this volume of power consumption seems hefty, consider that NVIDIA sold over half a million chips in a single quarter last year, and the effect starts to multiply exponentially. And while development of solar and wind power sources will replace most, if not all, of the current energy produced from coal, the stability of the power grid relies predominantly on the continuous stream of natural gas. That is, if the stream of investment into developing and expanding natural gas continues to grow in parallel.

Reflecting on the expectation from public and private investors, as well as upcoming talent, to embrace meaningful advancements in ESG, Will Van Loh, CEO of Quantum Energy Partners, shared the business benefit of greener practices.

“Switching your frac fleet from running diesel to natural gas, we saved one of our companies in the Haynesville half a million dollars per well and reduced GHG by 70 percent. Make a bunch of money and do good for the environment – (that’s a) pretty good deal,” Van Loh told Hart Energy’s editor-in-chief for Oil & Gas Investor, Deon Daugherty.

For decades, the industry has pursued increasingly eco-friendly habits, but the requirements of ESG reporting make it more visible to the rest of the world. Permian Operators, which produce almost half of all US daily oil volume, cited specific strides made in reducing emissions and operating more cleanly during their respective presentations:

  • Leadership from Diamondback Energy spoke about adopting the use of clear drilling fluids in lieu of oil-based mud, resulting in faster drilling times and cleaner operations. The technique came along with the acquisition of QEP Resources in 2021 and reflects the company’s commitment to remaining humble in its pursuit of more efficient and more environmentally beneficial methodologies.
  • Nick McKenna, vice president of the Midland Basin for ConocoPhillips praised their Lower48 team for reducing gas flaring by 80 percent since 2019 while also increasing the use of recycled water over 3x in that same 5-year horizon.
  • Clark Edwards, senior vice president of Development for BPX, cited achieving 95 percent electrification of their Permian well set as of the end of 2023. Building and installing their own microgrid – a practice repeated by numerous operators throughout the Basin, where public infrastructure lags far behind private entity needs – added enough megawatts to their operation to allow BPX to run drilling rigs completely independent of an already strained public grid.

In addition to reducing diesel usage, flaring, and dependence on the public grid for electricity, water management stays a top economic and ecological concern for shale operators all over the United States. While a compelling case of "have and have-not" dominated the shale water business over the last decade-plus, savvy operators increasingly embrace a mindset that water disposal should remain a choice of last resort. Companies like WaterBridge, a Joint Venture with Devon Energy, and Deep Blue, a joint venture with Diamondback Energy, help bring clean and recycled water to areas with shortages, both in and outside of the industry.

As Kaes Van’t Hof, president and CFO of Diamondback Energy, said, “The Midland Basin is now recycling as much water as it possibly can. Eventually it’s going to be about, ‘Water going downhole into a disposal well is the last option.’ Can you recycle it? Can you bring it somewhere else, evaporate it? We’re starting start some early de-sal[ination] tests in the Spanish Trail near the airport. Eventually, can we tell the story that we sell freshwater back to water the golf courses of Midland?”

The Energy Transition steams ahead, but pragmatic observations remind us that oil and gas make up approximately 60 percent of the energy supply today – a volume not easily replaced by any other source completely in the next few years. However, the overwhelming support for delivering the best barrel with the lowest carbon intensity possible permeated Hart Energy’s SUPER DUG Conference & Exhibition 2024.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based ENGIE to add new wind and solar projects to Texas grid

coming soon

Houston-based ENGIE North America Inc. has expanded its partnership with Los Angeles-based Ares Infrastructure Opportunities to add 730 megawatts of renewable energy projects to the ERCOT grid.

The new projects will include one wind and two solar projects in Texas.

“The continued growth of our relationship with Ares reflects the strength of ENGIE’s portfolio of assets and our track record of delivering, operating and financing growth in the U.S. despite challenging circumstances,” Dave Carroll, CEO and Chief Renewables Officer of ENGIE North America, said in a news release. “The addition of another 730 MW of generation to our existing relationship reflects the commitment both ENGIE and Ares have to meeting growing demand for power in the U.S. and our willingness to invest in meeting those needs.”

ENGIE has more than 11 gigawatts of renewable energy projects in operation or under construction in the U.S. and Canada, and 52.7 gigawatts worldwide. The company is targeting 95 gigawatts by 2030.

ENGIE launched three new community solar farms in Illinois since December, including the 2.5-megawatt Harmony community solar farm in Lena and the Knox 2A and Knox 2B projects in Galesburg.

The company's 600-megawatt Swenson Ranch Solar project near Abilene, Texas, is expected to go online in 2027 and will provide power for Meta, the parent company of social media platform Facebook. Late last year, ENGIE also signed a nine-year renewable energy supply agreement with AstraZeneca to support the pharmaceutical company’s manufacturing operations from its 114-megawatt Tyson Nick Solar Project in Lamar County, Texas.

Houston geothermal company raises $97M Series B

fresh funding

Houston-based geothermal energy startup Sage Geosystems has closed its Series B fundraising round and plans to use the money to launch its first commercial next-generation geothermal power generation facility.

Ormat Technologies and Carbon Direct Capital co-led the $97 million round, according to a press release from Sage. Existing investors Exa, Nabors, alfa8, Arch Meredith, Abilene Partners, Cubit Capital and Ignis H2 Energy also participated, as well as new investors SiteGround Capital and The UC Berkeley Foundation’s Climate Solutions Fund.

The new geothermal power generation facility will be located at one of Ormat Technologies' existing power plants. The Nevada-based company has geothermal power projects in the U.S. and numerous other countries around the world. The facility will use Sage’s proprietary pressure geothermal technology, which extracts geothermal heat energy from hot dry rock, an abundant geothermal resource.

“Pressure geothermal is designed to be commercial, scalable and deployable almost anywhere,” Cindy Taff, CEO of Sage Geosystems, said in the news release. “This Series B allows us to prove that at commercial scale, reflecting strong conviction from partners who understand both the urgency of energy demand and the criticality of firm power.”

Sage reports that partnering with the Ormat facility will allow it to market and scale up its pressure geothermal technology at a faster rate.

“This investment builds on the strong foundation we’ve established through our commercial agreement and reinforces Ormat’s commitment to accelerating geothermal development,” Doron Blachar, CEO of Ormat Technologies, added in the release. “Sage’s technical expertise and innovative approach are well aligned with Ormat’s strategy to move faster from concept to commercialization. We’re pleased to take this natural next step in a partnership we believe strongly in.”

In 2024, Sage agreed to deliver up to 150 megawatts of new geothermal baseload power to Meta, the parent company of Facebook. At the time, the companies reported that the project's first phase would aim to be operating in 2027.

The company also raised a $17 million Series A, led by Chesapeake Energy Corp., in 2024.

Houston expert discusses the clean energy founder's paradox

Guest Column

Everyone tells you to move fast and break things. In clean energy, moving fast without structural integrity means breaking the only planet we’ve got. This is the founder's paradox: you are building a company in an industry where the stakes are existential, the timelines are glacial, and the capital requires patience.

The myth of the lone genius in a garage doesn’t really apply here. Clean energy startups aren’t just fighting competitors. They are fighting physics, policy, and decades of existing infrastructure. This isn’t an app. You’re building something physical that has to work in the real world. It has to be cheaper, more reliable, and clearly better than fossil fuels. Being “green” alone isn’t enough. Scale is what matters.

Your biggest risks aren’t competitors. They’re interconnection delays, permitting timelines, supply chain fragility, and whether your first customer is willing to underwrite something that hasn’t been done before.

That reality creates a brutal filter. Successful founders in this space need deep technical knowledge and the ability to execute. You need to understand engineering, navigate regulation, and think in terms of markets and risk. You’re not just selling a product. You’re selling a future where your solution becomes the obvious choice. That means connecting short-term financial returns with long-term system change.

The capital is there, but it’s smarter and more demanding. Investors today have PhDs in electrochemistry and grid dynamics. They’ve been burned by promises of miracle materials that never left the lab. They don't fund visions; they fund pathways to impact that can scale and make financial sense. Your roadmap must show not just a brilliant invention, but a clear, believable plan to drive costs down over time.

Capital in this sector isn’t impressed by ambition alone. It wants evidence that risk is being retired in the right order — even if that means slower growth early.

Here’s the upside. The difficulty of clean energy is also its strength. If you succeed, your advantage isn’t just in software or branding. It’s in hardware, supply chains, approvals, and years of hard work that others can’t easily copy. Your real competitors aren’t other startups. They’re inertia and the existing system. Winning here isn’t zero-sum. When one solution scales, it helps the entire market grow.

So, to the founder in the lab, or running field tests at a remote site: your pace will feel slow. The validation cycles are long. But you are building in the physical world. When you succeed, you don’t have an exit. You have a foundation. You don't just have customers; you have converts. And the product you ship doesn't just generate revenue; it creates a legacy.

If your timelines feel uncomfortable compared to software, that’s because you’re operating inside a system designed to resist change. And let’s not forget you are building actual physical products that interact with a complex world. Times are tough. Don’t give up. We need you.

---

Nada Ahmed is the founding partner at Houston-based Energy Tech Nexus.