No critical minerals, no modern economy. Getty images

If you’re reading this on a phone, driving an EV, flying in a plane, or relying on the power grid to keep your lights on, you’re benefiting from critical minerals. These are the building blocks of modern life. Things like copper, lithium, nickel, rare earth elements, and titanium, they’re found in everything from smartphones to solar panels to F-35 fighter jets.

In short: no critical minerals, no modern economy.

These minerals aren’t just useful, they’re essential. And in the U.S., we don’t produce enough of them. Worse, we’re heavily dependent on countries that don’t always have our best interests at heart. That’s a serious vulnerability, and we’ve done far too little to fix it.

Where We Use Them and Why We’re Behind

Let’s start with where these minerals show up in daily American life:

  • Electric vehicles need lithium, cobalt, and nickel for batteries.
  • Wind turbines and solar panels rely on rare earths and specialty metals.
  • Defense systems require titanium, beryllium, and rare earths.
  • Basic infrastructure like power lines and buildings depend on copper and aluminum.

You’d think that something so central to the economy, and to national security, would be treated as a top priority. But we’ve let production and processing capabilities fall behind at home, and now we’re playing catch-up.

The Reality Check: We’re Not in Control

Right now, the U.S. is deeply reliant on foreign sources for critical minerals, especially China. And it’s not just about mining. China dominates processing and refining too, which means they control critical links in the supply chain.

Gabriel Collins and Michelle Michot Foss from the Baker Institute lay all this out in a recent report that every policymaker should read. Their argument is blunt: if we don’t get a handle on this, we’re in trouble, both economically and militarily.

China has already imposed export controls on key rare earth elements like dysprosium and terbium which are critical for magnets, batteries, and defense technologies, in direct response to new U.S. tariffs. This kind of tit-for-tat escalation exposes just how much leverage we’ve handed over. If this continues, American manufacturers could face serious material shortages, higher costs, and stalled projects.

We’ve seen this movie before, in the pandemic, when supply chains broke and countries scrambled for basics like PPE and semiconductors. We should’ve learned our lesson.

We Do Have a Stockpile, But We Need a Strategy

Unlike during the Cold War, the U.S. no longer maintains comprehensive strategic reserves across the board, but we do have stockpiles managed by the Defense Logistics Agency. The real issue isn’t absence, it’s strategy: what to stockpile, how much, and under what assumptions.

Collins and Michot Foss argue for a more robust and better-targeted approach. That could mean aiming for 12 to 18 months worth of demand for both civilian and defense applications. Achieving that will require:

  • Smarter government purchasing and long-term contracts
  • Strategic deals with allies (e.g., swapping titanium for artillery shells with Ukraine)
  • Financing mechanisms to help companies hold critical inventory for emergency use

It’s not cheap, but it’s cheaper than scrambling mid-crisis when supplies are suddenly cut off.

The Case for Advanced Materials: Substitutes That Work Today

One powerful but often overlooked solution is advanced materials, which can reduce our dependence on vulnerable mineral supply chains altogether.

Take carbon nanotube (CNT) fibers, a cutting-edge material invented at Rice University. CNTs are lighter, stronger, and more conductive than copper. And unlike some future tech, this isn’t hypothetical: we could substitute CNTs for copper wire harnesses in electrical systems today.

As Michot Foss explained on the Energy Forum podcast:

“You can substitute copper and steel and aluminum with carbon nanotube fibers and help offset some of those trade-offs and get performance enhancements as well… If you take carbon nanotube fibers and you put those into a wire harness… you're going to be reducing the weight of that wire harness versus a metal wire harness like we already use. And you're going to be getting the same benefit in terms of electrical conductivity, but more strength to allow the vehicle, the application, the aircraft, to perform better.”

By accelerating R&D and deployment of CNTs and similar substitutes, we can reduce pressure on strained mineral supply chains, lower emissions, and open the door to more secure and sustainable manufacturing.

We Have Tools. We Need to Use Them.

The report offers a long list of solutions. Some are familiar, like tax incentives, public-private partnerships, and fast-tracked permits. Others draw on historical precedent, like “preclusive purchasing,” a WWII tactic where the U.S. bought up materials just so enemies couldn’t.

We also need to get creative:

  • Repurpose existing industrial sites into mineral hubs
  • Speed up R&D for substitutes and recycling
  • Buy out risky foreign-owned assets in friendlier countries

Permitting remains one of the biggest hurdles. In the U.S., it can take 7 to 10 years to approve a new critical minerals project, a timeline that doesn’t match the urgency of our strategic needs. As Collins said on the Energy Forum podcast:

“Time kills deals... That’s why it’s more attractive generally to do these projects elsewhere.”

That’s the reality we’re up against. Long approval windows discourage investment and drive developers to friendlier jurisdictions abroad. One encouraging step is the use of the Defense Production Act to fast-track permitting under national security grounds. That kind of shift, treating permitting as a strategic imperative, must become the norm, not the exception.

It’s Time to Redefine Sustainability

Sustainability has traditionally focused on cutting carbon emissions. That’s still crucial, but we need a broader definition. Today, energy and materials security are just as important.

Countries are now weighing cost and reliability alongside emissions goals. We're also seeing renewed attention to recycling, biodiversity, and supply chain resilience.

Net-zero by 2050 is still a target. But reality is forcing a more nuanced discussion:

  • What level of warming is politically and economically sustainable?
  • What tradeoffs are we willing to make to ensure energy access and affordability?

The bottom line: we can’t build a clean energy future without secure access to materials. Recycling helps, but it’s not enough. We'll need new mines, new tech, and a more flexible definition of sustainability.

My Take: We’re Running Out of Time

This isn’t just a policy debate. It’s a test of whether we’ve learned anything from the past few years of disruption. We’re not facing an open war, but the risks are real and growing.

We need to treat critical minerals like what they are: a strategic necessity. That means rebuilding stockpiles, reshoring processing, tightening alliances, and accelerating permitting across the board.

It won’t be easy. But if we wait until a real crisis hits, it’ll be too late.

———

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn on April 11, 2025.


Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston ranks No. 99 out of 100 on new report of greenest U.S. cities

Sustainability Slide

Houstonians may be feeling blue about a new ranking of the greenest cities in the U.S.

Among the country’s 100 largest cities based on population, Houston ranks 99th across 28 key indicators of “green” living in a new study from personal finance website WalletHub. The only city with a lower ranking is Glendale, Arizona. Last year, Houston landed at No. 98 on the WalletHub list.

“‘Green’ living means a choice to engage in cleaner, more sustainable habits in order to preserve the planet as much as possible,” WalletHub says.

Among the study’s ranking factors are the amount of greenhouse gas emissions per capita, the number of “smart energy” policies, and the presence of “green job” programs.

In the study, Houston received an overall score of 35.64 out of 100. WalletHub put its findings into four buckets, with Houston ranked 100th in the environment and transportation categories, 56th in the lifestyle and policy category, and 52nd in the energy sources category.

In the environment category, Houston has two big strikes against it. The metro area ranks among the 10 worst places for ozone pollution (No. 7) and year-round particle pollution (No. 8), according to the American Lung Association’s 2025 list of the most polluted cities.

In the WalletHub study, San Jose, California, earns the honor of being the country’s greenest city. It’s followed by Washington, D.C.; Oakland, California; Irvine, California; and San Francisco.

“There are plenty of things that individuals can do to adopt a green lifestyle, from recycling to sharing rides to installing solar panels on their homes,” WalletHub analyst Chip Lupo said in the report. “However, living in one of the greenest cities can make it even easier to care for the environment, due to sustainable laws and policies, access to locally grown produce, and infrastructure that allows residents to use vehicles less often. The greenest cities also are better for your health due to superior air and water quality.”

Greentown to add new Houston AI lab from latest Houston partner

AI partnership

Greentown Labs has partnered with Shoreless to launch an AI lab within its Houston climatetech incubator.

"Climatetech and energy startups are transforming industries, and AI is a critical tool in that journey," Lawson Gow, Greentown's Head of Houston, said in a news release. "We're excited to bring this new offering to our entrepreneurs and corporate partners to enhance the way they think about reducing costs and emissions across the value chain."

Shoreless, a Houston-based company that enables AI adoption for enterprise systems, will support startups developing solutions for supply-chain optimization and decarbonization. They will offer Greentown members climate sprint sessions that will deliver AI-driven insights to assist companies in reducing Scope 3 emissions, driving new revenue streams and lowering expenses. Additionally, the lab will help companies test their ideas before attempting to scale them globally.

"The future of climatetech is intertwined with the future of AI," Ken Myers, Founder and CEO of Shoreless, said in a news release."By launching this AI lab with Greentown Labs, we are creating a collaborative ecosystem where innovation can flourish. Our agentic AI is designed to help companies make a real difference, and we are excited to see the groundbreaking solutions that will emerge from this partnership."

Greentown and Shoreless will collaborate on workshops that address industry needs for technical teams, and Shoreless will also work to provide engagement opportunities and tailored workshops for Greentown’s startups and residents. Interested companies can inquire here.

Recently, Greentown Labs also partnered with Los Angeles-based software development firm Nominal to launch the new Industrial Center of Excellence at Greentown's Houston incubator. It also announced a partnership with Houston-based EnergyTech Nexus, which will also open an investor lounge on-site last month. Read more here.