Some of those counties affected include production hot spots within the San Juan Basin in northwestern New Mexico and the Permian Basin, which straddles the New Mexico-Texas line. Photo via Getty Images

The New Mexico Court of Appeals has upheld regulations aimed at cracking down on emissions in one of the nation’s top-producing oil and gas states.

The case centered on a rule adopted in 2022 by state regulators that called for curbing the pollutants that chemically react in the presence of sunlight to create ground-level ozone, commonly known as smog. High ozone levels can cause respiratory problems, including asthma and chronic bronchitis.

Democratic Gov. Michelle Lujan Grisham's administration has long argued that the adoption of the ozone precursor rule along with regulations to limit methane emissions from the industry were necessary to combat climate change and meet federal clean air standards.

New Mexico Environment Secretary James Kenney said the court's decision on Wednesday affirmed that the rule was properly developed and there was substantial evidence to back up its approval by regulators.

“These rules aren’t going anywhere,” Kenney said in a statement to The New Mexican, suggesting that the industry stop spending resources on legal challenges and start working to comply with New Mexico's requirements.

The Independent Petroleum Association of New Mexico had argued in its appeal that the rule disproportionately affected independent operators.

“The administration needs to stop its ‘death by a thousand cuts’ hostility to the smaller, family-owned, New Mexico-based operators,” the group's executive director, Jim Winchester, said in an email to the newspaper.

The group is considering its legal options.

Under the rule, oil and gas operators must monitor emissions for smog-causing pollutants — nitrogen oxides and volatile organic compounds — and regularly check for and fix leaks.

The rule applies to eight counties — Chaves, Doña Ana, Eddy, Lea, Rio Arriba, Sandoval, San Juan and Valencia — where ozone pollutants have reached at least 95% of the federal ambient air quality standard. Some of those counties include production hot spots within the San Juan Basin in northwestern New Mexico and the Permian Basin, which straddles the New Mexico-Texas line.

The industry group had argued that Chaves and Rio Arriba counties shouldn’t be included. The court disagreed, saying those counties are located within broader geographic regions that did hit that 95% threshold.

The new initiative will take stranded natural gas and turn it into hydrogen. Photo via Getty Images

New York financial firm partners with Houston O&G co. to turn natural gas into blue hydrogen

teamwork

A new partnership between an energy and sustainability investor and a Houston-based company that focuses on cleaner solutions in the oil and gas industry will look into turning stranded natural gas into blue hydrogen.

New York-based Double Zero Holdings and SJ Environmental announced their new partnership this week in an effort to move forward the energy transition. According to the companies, stranded natural gas — mostly methane — usually remains unused where it is not economically viable to transport. By turning these gasses into into blue hydrogen, "the partnership mitigates methane and CO2 emissions while producing hydrogen—a clean fuel that could revolutionize multiple industries," reads the news release.

The initiative will use existing technologies, which can be reduced to the size of a standard shipping container, per the release.

"We're thrilled to partner with SJ Environmental to tackle one of the most pressing environmental issues today," Raja Ramachandran, managing partner of Double Zero Holdings, says in the release. "This collaboration allows us to turn stranded natural gas—a significant environmental liability—into a valuable resource, supporting the global shift toward cleaner energy."

The plan is to lower the amount of natural gas left wasted and provide a low-carbon alternative across transportation, manufacturing, and power generation.

"Our collaboration with Double Zero Holdings reflects our commitment to innovative, sustainable solutions," SJ Environmental Director John Chappell adds. "Together, we're setting a new standard for energy production, delivering hydrogen and food-grade CO₂ where natural gas would typically be flared."

bp is now using Baker Hughes emissions abatement technology, flare.IQ, to quantify methane emissions from its flares. Photo via Canva

Baker Hughes, bp team up on flare emissions monitoring tech

partnerships

Two energy companies with Houston headquarters are collaborating on flare emissions monitoring.

According to a news release, bp is now using Baker Hughes emissions abatement technology, flare.IQ, to quantify "methane emissions from its flares, a new application for the upstream oil and gas sector." The statement goes on to explain that the industry doesn't have a to methane emission quantifying, and that bp ad Baker Hughes has facilitated a large, full-scale series of studies on the technology.

Now, bp is utilizing 65 flares across seven regions to reduce emissions.

“bp’s transformation is underway, turning strategy into action through delivery of our targets and aims. We don’t have all the answers, and we certainly can’t do this on our own," Fawaz Bitar, bp senior vice president of Health Safety Environment & Carbon, says in the release. "Through our long-standing partnership with Baker Hughes, we have progressed technology and implemented methane quantification for oil and gas flares, helping us to achieve the first milestone of our Aim 4. We continue to look at opportunities like this, where we can collaborate across the industry to find solutions to our biggest challenges."

The flare.IQ technology is a part of Baker Hughes’ Panametrics product line portfolio, and it builds on 40 years of ultrasonic flare metering technology experience. The advanced analytics platform provides operators with real-time, decision-making data.

“Our collaboration with bp is an important landmark and a further illustration that technology is a key enabler for addressing the energy trilemma of security, sustainability and affordability,” Ganesh Ramaswamy, executive vice president of Industrial & Energy Technology at Baker Hughes, says in the release. “As a leader in developing climate technology solutions, such as our flare.IQ emissions monitoring and abatement technology, cooperations like the one we have with bp are key to testing and validating in the field solutions that can enable operators to achieve emissions reduction goals efficiently and economically.”

The data shows the biggest leaks are in the Permian basin of Texas and New Mexico. Photo via Getty Images

US energy industry methane emissions are triple what government thinks, study finds

by the numbers

American oil and natural gas wells, pipelines and compressors are spewing three times the amount of the potent heat-trapping gas methane as the government thinks, causing $9.3 billion in yearly climate damage, a new comprehensive study calculates.

But because more than half of these methane emissions are coming from a tiny number of oil and gas sites, 1% or less, this means the problem is both worse than the government thought but also fairly fixable, said the lead author of a study in Wednesday's journal Nature.

The same issue is happening globally. Large methane emissions events around the world detected by satellites grew 50% in 2023 compared to 2022 with more than 5 million metric tons spotted in major fossil fuel leaks, the International Energy Agency reported Wednesday in their Global Methane Tracker 2024. World methane emissions rose slightly in 2023 to 120 million metric tons, the report said.

“This is really an opportunity to cut emissions quite rapidly with targeted efforts at these highest emitting sites,” said lead author Evan Sherwin, an energy and policy analyst at the U.S. Department of Energy's Lawrence Berkeley National Lab who wrote the study while at Stanford University. “If we can get this roughly 1% of sites under control, then we're halfway there because that's about half of the emissions in most cases.”

Sherwin said the fugitive emissions come throughout the oil and gas production and delivery system, starting with gas flaring. That's when firms release natural gas to the air or burn it instead of capturing the gas that comes out of energy extraction. There's also substantial leaks throughout the rest of the system, including tanks, compressors and pipelines, he said.

“It's actually straightforward to fix,” Sherwin said.

In general about 3% of the U.S. gas produced goes wasted into the air, compared to the Environmental Protection Agency figures of 1%, the study found. Sherwin said that's a substantial amount, about 6.2 million tons per hour in leaks measured over the daytime. It could be lower at night, but they don't have those measurements.

The study gets that figure using one million anonymized measurements from airplanes that flew over 52% of American oil wells and 29% of gas production and delivery system sites over a decade. Sherwin said the 3% leak figure is the average for the six regions they looked at and they did not calculate a national average.

Methane over a two-decade period traps about 80 times more heat than carbon dioxide, but only lasts in the atmosphere for about a decade instead of hundreds of years like carbon dioxide, according to the EPA.

About 30% of the world's warming since pre-industrial times comes from methane emissions, said IEA energy supply unit head Christophe McGlade. The United States is the No. 1 oil and gas production methane emitter, with China polluting even more methane from coal, he said.

Last December, the Biden administration issued a new rule forcing the U.S. oil and natural gas industry to cut its methane emissions. At the same time at the United Nations climate negotiations in Dubai, 50 oil companies around the world pledged to reach near zero methane emissions and end routine flaring in operations by 2030. That Dubai agreement would trim about one-tenth of a degree Celsius, nearly two-tenths of a degree Fahrenheit, from future warming, a prominent climate scientist told The Associated Press.

Monitoring methane from above, instead of at the sites or relying on company estimates, is a growing trend. Earlier this month the market-based Environmental Defense Fund and others launched MethaneSAT into orbit. For energy companies, the lost methane is valuable with Sherwin's study estimate it is worth about $1 billion a year.

About 40% of the global methane emissions from oil, gas and coal could have been avoided at no extra cost, which is “a massive missed opportunity,” IEA's McGlade said. The IEA report said if countries do what they promised in Dubai they could cut half of the global methane pollution by 2030, but actions put in place so far only would trim 20% instead, “a very large gap between emissions and actions,” McGlade said.

“It is critical to reduce methane emissions if the world is to meet climate targets,” said Cornell University methane researcher Robert Horwath, who wasn't part of Sherwin's study.

“Their analysis makes sense and is the most comprehensive study by far out there on the topic,” said Howarth, who is updating figures in a forthcoming study to incorporate the new data.

The overflight data shows the biggest leaks are in the Permian basin of Texas and New Mexico.

“It's a region of rapid growth, primarily driven by oil production,” Sherwin said. “So when the drilling happens, both oil and gas comes out, but the main thing that the companies want to sell in most cases was the oil. And there wasn't enough pipeline capacity to take the gas away” so it spewed into the air instead.

Contrast that with tiny leak rates found in drilling in the Denver region and the Pennsylvania area. Denver leaks are so low because of local strictly enforced regulations and Pennsylvania is more gas-oriented, Sherwin said.

This shows a real problem with what National Oceanic and Atmospheric Association methane-monitoring scientist Gabrielle Petron calls “super-emitters."

“Reliably detecting and fixing super-emitters is a low hanging fruit to reduce real life greenhouse gas emissions,” Petron, who wasn't part of Sherwin's study, said. “This is very important because these super-emitter emissions are ignored by most ‘official’ accounting.”

Stanford University climate scientist Rob Jackson, who also wasn't part of the study, said, “a few facilities are poisoning the air for everyone.”

“For more than a decade, we’ve been showing that the industry emits far more methane than they or government agencies admit," Jackson said. “This study is capstone evidence. And yet nothing changes.”

A proposed Environmental Protection Agency rule intended to encourage industry to adopt best practices that reduce emissions of methane and thereby avoid paying. Photo via Canva

EPA sets out rules for proposed 'methane fee' for waste generated by oil and natural gas companies

pollution deterrent

Oil and natural gas companies for the first time would have to pay a fee for methane emissions that exceed certain levels under a rule proposed Friday by the Biden administration.

The proposed Environmental Protection Agency rule follows through on a directive from Congress included in the 2022 climate law. The new fee is intended to encourage industry to adopt best practices that reduce emissions of methane and thereby avoid paying.

Methane is a climate “super pollutant” that is more potent in the short term than carbon dioxide and is responsible for about one-third of greenhouse gas emissions. The oil and natural gas sector is the largest industrial source of methane emissions in the United States, and advocates say reduction of methane emissions is an important way to slow climate change.

Excess methane produced this year would result in a fee of $900 per ton, with fees rising to $1,500 per ton by 2026.

EPA Administrator Michael Regan said the proposed fee would work in tandem with a final rule on methane emissions EPA announced last month. The fee, formally known as the Methane Emissions Reduction Program, will encourage early deployment of available technologies to reduce methane emissions and other harmful air pollutants before the new standards take effect, he said.

The rule announced in December includes a two-year phase-in period for companies to eliminate routine flaring of natural gas from new oil wells.

“EPA is delivering on a comprehensive strategy to reduce wasteful methane emissions that endanger communities and fuel the climate crisis,” Regan said in a statement. When finalized later this year, the proposed methane fee will set technology standards that will “incentivize industry innovation'' and spur action to reduce pollution, he said.

Leading oil and gas companies already meet or exceed performance levels set by Congress under the climate law, meaning they will not have to pay the proposed fee, Regan and other officials said.

Sen. Tom Carper, chairman of the Senate Environment and Public Works Committee, said he was pleased the administration was moving forward with the methane fee as directed by Congress.

“We know methane is over 80 times more potent than carbon dioxide at trapping heat in our atmosphere in the short term,'' said Carper, D-Del. He said the program "will incentivize producers to cut wasteful and excessive methane emissions during oil and gas production.”

New Jersey Rep. Frank Pallone, the top Democrat on the House Energy and Commerce Committee, said oil and gas companies have long calculated that it's cheaper to waste methane through flaring and other techniques than to make necessary upgrades to prevent leaks.

“Wasted methane never makes its way to consumers, but they are nevertheless stuck with the bill,” Pallone said. The proposed methane fee “will ensure consumers no longer pay for wasted energy or the harm its emissions can cause.''

Republicans call the methane fee a tax that could raise the price of natural gas. “This proposal means increased costs for employers and higher energy bills for millions of Americans,” said Sen. Shelley Moore Capito, R-West Virginia.

The American Petroleum Institute, the oil and gas industry's largest lobbying group, slammed the proposal Friday and called for Congress to repeal it.

“As the world looks to U.S. energy producers to provide stability in an increasingly unstable world, this punitive tax increase is a serious misstep that undermines America’s energy advantage,'' said Dustin Meyer, API's senior vice president of policy, economics and regulatory affairs.

While the group supports “smart” federal methane regulation, the EPA proposal “creates an incoherent, confusing regulatory regime that will only stifle innovation and undermine our ability to meet rising energy demand,'' Meyer said. “We look forward to working with Congress to repeal the IRA’s misguided new tax on American energy.”

Fred Krupp, president of the Environmental Defense Fund, called the proposed fee "common sense,'' adding that oil and gas companies should be held accountable for methane pollution, a primary source of global warming.

In a related development, EPA said it is working with industry and others to improve how methane emissions are reported, citing numerous studies showing that and oil and gas companies have significantly underreported their methane emissions to the EPA under the agency's Greenhouse Gas Reporting Program.

The climate law, formally known as the Inflation Reduction Act, established a waste-emissions charge for methane from oil and gas facilities that report emissions of more than 25,000 metric tons of carbon dioxide equivalent per year to the EPA. The proposal announced Friday sets out details of how the fee will be implemented, including how exemptions will be applied.

The agency said it expects that over time, fewer oil and gas sites will be charged as they reduce their emissions in compliance with the rule.

The world can't keep on with what it's doing and expect to reach its goals when it comes to climate change. Radical innovations are needed at this point, writes Scott Nyquist. Photo via Getty Images

Only radical innovation can get the world to its climate goals, says this Houston expert

guest column

Almost 3 years ago, McKinsey published a report arguing that limiting global temperature rises to 1.5 degrees Celsius above pre-industrial levels was “technically achievable,” but that the “math is daunting.” Indeed, when the 1.5°C figure was agreed to at the 2015 Paris climate conference, the assumption was that emissions would peak before 2025, and then fall 43 percent by 2030.

Given that 2022 saw the highest emissions ever—36.8 gigatons—the math is now more daunting still: cuts would need to be greater, and faster, than envisioned in Paris. Perhaps that is why the Intergovernmental Panel on Climate Change (IPCC) noted March 20 (with “high confidence”) that it was “likely that warming will exceed 1.5°C during the 21st century.”

I agree with that gloomy assessment. Given the rate of progress so far, 1.5°C looks all but impossible. That puts me in the company of people like Bill Gates; the Economist; the Australian Academy of Science, and apparently many IPCC scientists. McKinsey has estimated that even if all countries deliver on their net zero commitments, temperatures will likely be 1.7°C higher in 2100.

In October, the UN Environment Program argued that there was “no credible pathway to 1.5°C in place” and called for “an urgent system-wide transformation” to change the trajectory. Among the changes it considers necessary: carbon taxes, land use reform, dietary changes in which individuals “consume food for environmental sustainability and carbon reduction,” investment of $4 trillion to $6 trillion a year; applying current technology to all new buildings; no new fossil fuel infrastructure. And so on.

Let’s assume that the UNEP is right. What are the chances of all this happening in the next few years? Or, indeed, any of it? President Obama’s former science adviser, Daniel Schrag, put it this way: “ Who believes that we can halve global emissions by 2030?... It’s so far from reality that it’s kind of absurd.”

Having a goal is useful, concentrating minds and organizing effort. And I think that has been the case with 1.5°C, or recent commitments to get to net zero. Targets create a sense of urgency that has led to real progress on decarbonization.

The 2020 McKinsey report set out how to get on the 1.5°C pathway, and was careful to note that this was not a description of probability or reality but “a picture of a world that could be.” Three years later, that “world that could be” looks even more remote.

Consider the United States, the world’s second-largest emitter. In 2021, 79 percent of primary energy demand (see chart) was met by fossil fuels, about the same as a decade before. Globally, the figures are similar, with renewables accounting for just 12.5 percent of consumption and low-emissions nuclear another 4 percent. Those numbers would have to basically reverse in the next decade or so to get on track. I don’t see how that can happen.

No alt text provided for this image

Credit: Energy Information Administration

But even if 1.5°C is improbable in the short term, that doesn’t mean that missing the target won’t have consequences. And it certainly doesn’t mean giving up on addressing climate change. And in fact, there are some positive trends. Many companies are developing comprehensive plans for achieving net-zero emissions and are making those plans part of their long-term strategy. Moreover, while global emissions grew 0.9 percent in 2022, that was much less than GDP growth (3.2 percent). It’s worth noting, too, that much of the increase came from switching from gas to coal in response to the Russian invasion of Ukraine; that is the kind of supply shock that can be reversed. The point is that growth and emissions no longer move in lockstep; rather the opposite. That is critical because poorer countries are never going to take serious climate action if they believe it threatens their future prosperity.

Another implication is that limiting emissions means addressing the use of fossil fuels. As noted, even with the substantial rise in the use of renewables, coal, gas, and oil are still the core of the global energy system. They cannot be wished away. Perhaps it is time to think differently—that is, making fossil fuels more emissions efficient, by using carbon capture or other technologies; cutting methane emissions; and electrifying oil and gas operations. This is not popular among many climate advocates, who would prefer to see fossil fuels “stay in the ground.” That just isn’t happening. The much likelier scenario is that they are gradually displaced. McKinsey projects peak oil demand later this decade, for example, and for gas, maybe sometime in the late 2030s. Even after the peak, though, oil and gas will still be important for decades.

Second, in the longer term, it may be possible to get back onto 1.5°C if, in addition to reducing emissions, we actually remove them from the atmosphere, in the form of “negative emissions,” such as direct air capture and bioenergy with carbon capture and storage in power and heavy industry. The IPCC itself assumed negative emissions would play a major role in reaching the 1.5°C target; in fact, because of cost and deployment problems, it’s been tiny.

Finally, as I have argued before, it’s hard to see how we limit warming even to 2°C without more nuclear power, which can provide low-emissions energy 24/7, and is the largest single source of such power right now.

None of these things is particularly popular; none get the publicity of things like a cool new electric truck or an offshore wind farm (of which two are operating now in the United States, generating enough power for about 20,000 homes; another 40 are in development). And we cannot assume fast development of offshore wind. NIMBY concerns have already derailed some high-profile projects, and are also emerging in regard to land-based wind farms.

Carbon capture, negative emissions, and nuclear will have to face NIMBY, too. But they all have the potential to move the needle on emissions. Think of the potential if fast-growing India and China, for example, were to develop an assembly line of small nuclear reactors. Of course, the economics have to make sense—something that is true for all climate-change technologies.

And as the UN points out, there needs to be progress on other issues, such as food, buildings, and finance. I don’t think we can assume that such progress will happen on a massive scale in the next few years; the actual record since Paris demonstrates the opposite. That is troubling: the IPCC notes that the risks of abrupt and damaging impacts, such as flooding and crop yields, rise “with every increment of global warming.” But it is the reality.

There is one way to get us to 1.5°C, although not in the Paris timeframe: a radical acceleration of innovation. The approaches being scaled now, such as wind, solar, and batteries, are the same ideas that were being discussed 30 years ago. We are benefiting from long-term, incremental improvements, not disruptive innovation. To move the ball down the field quickly, though, we need to complete a Hail Mary pass.

It’s a long shot. But we’re entering an era of accelerated innovation, driven by advanced computing, artificial intelligence, and machine learning that could narrow the odds. For example, could carbon nanotubes displace demand for high-emissions steel? Might it be possible to store carbon deep in the ocean? Could geo-engineering bend the curve?

I believe that, on the whole, the world is serious about climate change. I am certain that the energy transition is happening. But I don’t think we are anywhere near to being on track to hit the 1.5°C target. And I don’t see how doing more of the same will get us there.

------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based co. closes acquisition of 50 percent stake in Texas cogeneration facility

M&A Moves

Fengate Asset Management announced the financial close on the acquisition of a 50 percent interest in Freeport Power Limited, which owns a 440-megawatt cogeneration facility in Freeport, Texas.

FPL is located near the Freeport Energy Center, which is a 260-megawatt cogeneration facility that is currently owned and managed by Fengate. The two facilities work to provide cost-effective power and steam to Dow’s Freeport site, which is the largest integrated chemical manufacturing complex in the Western Hemisphere.

“We are thrilled to have closed this acquisition, which aligns with our strategy of acquiring behind-the-meter cogeneration projects with strong industrial partners like Dow,” Greg Calhoun, managing director of Infrastructure Investments at Fengate, says in a news release.

Fengate was able to acquire interest in FPL under a strategic operating partnership with asset manager Ironclad Energy. The partnership with Ironclad was established in 2022 to acquire and operate cogeneration, district energy and other power generation projects throughout North America.

“This is our second acquisition with Fengate, and we look forward to continuing our partnership to optimize and expand the portfolio,” Christopher Fanella, president and CFO of Ironclad Energy, says in the release.

Fengate opened its first U.S. office in 2017 in Houston.

“Combined heat and power projects like FPL will continue to play an important role in the U.S. power industry – especially for hard-to-abate industrial sectors – to ensure reliability, efficiency and affordability,” adds in the release.

Houston energy leader on why the future of fuels is more than electric vehicles

guest column

Gasoline, diesel, bunker fuel, and jet fuel. Four liquid hydrocarbons that have been powering transportation for the last 100-plus years.

Gas stations, truck stops, ports, and airport fuel terminals have been built up over the last century to make transportation easy and reliable.

These conventional fuels release Greenhouse Gases (GHG) when they are used, and governments all over the world are working on plans to shift towards cleaner fuels in an effort to lower emissions and minimize the effects of climate change.

For passenger cars, it’s clear that electricity will be the cleaner fuel type, with most countries adopting electric vehicles (EVs), and in some cases, providing their citizens with incentives to make the switch.

While many articles have been written about EVs and the benefits that come along with them, they fail to look at the transportation system as a whole.

Trucks, cargo ships, and airplanes are modes of transportation that are used every day, but they don’t often get the spotlight like EVs do.

For governments to be effective in curbing transportation-related greenhouse emissions, they must consider all forms of transportation and cleaner fuel options for them as well.

43 percent of GHG emissions comes from these modes of transportation. Therefore, using electricity to reduce GHG emissions in light duty vehicles only accounts for part of the total transportation emissions equation.

The path to cleaner fuels for these transportation modes has its challenges.

According to Ed Emmett, Fellow in Energy and Transportation Policy at the Baker Institute Center for Energy Studies (CES);

  • "Airplanes cannot be realistically powered by electricity, at least not currently, and handle the same requisite freight and passenger loads"
  • "The long-haul trucking industry [...] pushed back against electrification as being impractical due to the size and weight of batteries, their limited range, and the cost of adoption"
  • "Shipowners have expressed reluctance to scrap existing bunker fueled ships for newer, more expensive ships, especially when other fueling options, e.g. biofuels and hydrocarbon derivatives-for fleets can be made available"

Finding low-cost, reliable, and environmentally sound fuels for the various segments of transportation is complex. As Emmett suggests in his latest article;

"Hovering over the transition to other fuels for almost every transportation mode is the question of dependability of supply. For the trucking industry, the truck stop industry must be able to adapt to new fuel requirements. For ocean shipping, ports must be able to meet the fuel needs of new ships. Airlines, air cargo carriers and airports need to be on the same page when it comes to aviation fuels. In other words, the adoption equation in transitions in transportation is not only a function of the availability and cost of the new technology but also a function of the cost of the full supply chain needed to support fuel production and delivery to the point of use. Going forward, the transportation industry is facing a dilemma: How are environmental concerns addressed while simultaneously maintaining operational efficiency and avoiding unnecessary upward cost shifts for moving goods and people? In answering that question, for the first time in history, modes of transportation may end up going in multiple different directions when it comes to the fuels each mode ultimately chooses."

This is why many forecasts predict that hydrocarbon demand will continue through 2050, despite ambitious aspirations of achieving net zero emissions by that year. The McKinsey "slow evolution" scenario has global liquid hydrocarbon demand in 2050 at 92mmb/d versus 103 mmb/d in 2023. With their "continued momentum" scenario, oil demand is 75 mmb/d. Proportionally, global oil demand related to GHG emissions from transportation would decline 11-27 percent. The global uptake of EVs is the primary driver of uncertainty around future oil demand. In all the McKinsey scenarios, the share of EVs in passenger cars sales is expected to be above 90 percent by 2050.

The Good News

Despite the relatively slow progress expected for reducing GHG emissions in the global transportation sector, there are solutions emerging that lower the carbon footprint tied to traditional petroleum-based fuels. Emmett highlights some of the methods under study, noting that "sustainable biofuels sourced from cooking oils, animal fats, and agriculture products, as well as hydrogen, methanol, ammonia, and various e-fuels are among the options being tested. Some ocean carriers are already ordering ships powered by liquified natural gas, bio-e-methanol, bio/e-methane, ammonia, and hydrogen. Airlines are already using sustainable aviation fuel as a supplement to basic aviation fuel. Railroads are testing hydrogen locomotives. The trucking industry is decarbonizing local delivery by using vehicles powered by electricity, compressed natural gas, and sustainable diesel. Long-haul trucking companies are considering sustainable diesel as a drop-in fuel for existing equipment, and fuel suppliers are researching new engines fueled by hydrogen and other alternative fuels."

Most of these options will require a combination of increased government incentives, along with advancements in technology and cost reductions.

McKinsey's "sustainable transformation" scenario, which considers potential shifts in government regulations as well as advancements in technology and cost, suggests there is moderate growth in alternative fuels alongside growth in EVs. Mckinsey projects;

  • EV demand could grow to over 90 percent of total passenger car sales by 2050
  • EVs to make up around 80 percent of commercial truck sales by 2050
  • In aviation, low carbon fuels such as biofuels, synfuels, hydrogen and electricity are projected to grow to 49 percent by 2050.

According to McKinsey, the combination of these alternatives along with demand changes in power and chemicals could reduce global oil demand to 60 mmb/d in 2050. The shift to cleaner fuels, for modes of transportation other than EVs, is underway but the progress and adoption will take decades to achieve according to McKinsey’s forecasts.

Looking more closely at EVs, the story may not be as dire globally as it seems to be in the West. While the U.S. appears to be losing momentum on electric vehicle adoption, China is roaring ahead. New electric car registrations in China reached 8.1 million in 2023, increasing by 35 percent relative to 2022. McKinsey’s forecasts have underestimated global EV sales in the past, with China surpassing their estimates, while the U.S. lags behind. It’s clear that China is the winner in EV adoption; could they also lead the way to adopt cleaner fuels for other modes of transport? That is something governments and the transportation industry will be watching in the years ahead.

Conclusion

While we are not on a trajectory to meet the aspirations to reduce global GHG emissions in the transportation sector, there are emerging solutions that could be adopted should governments around the world decide to put in place the incentives to get there. Moving forward, the future of transportation fuels will be shaped by a mix of innovation, government policies, and what consumers want. The focus will be on ensuring that the transportation sector remains reliable, secure, and economically robust, while also reducing GHG emissions. But, decarbonizing the transportation sector is much more than just EV's – it's a broader effort that will require continued global progress in each of the multiple transportation segments.

------------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn on October 9, 2024.

Houston company secures $10M contract to deliver subsea well decommissioning solution

big deal

Houston energy services provider Expro was awarded a contract valued at over $10 million for the provision of a well decommissioning solution.

The solution will combine subsea safety systems and surface processing design that can enable safe entry to the well and management of well fluids.

“The contract reinforces our reputation as the leading provider of subsea safety systems and surface well test equipment, including within the P&A sector,” Iain Farley, Expro’s regional vice president for Europe and Sub-Saharan Africa, says in a news release. "It demonstrates our commitment to delivering best-in-class equipment, allied with the highest standards of safety and service quality that Expro is renowned for.”

Expro will provide from its global support hub in Aberdeen, a surface fluid management package and a market-leading 7-3/8 inch large-bore subsea test tree assembly (SSTTA). This will include surface tree and controls that can provide dual barrier and disconnect capability to facilitate re-entry into the subsea wells.

Expro has been supplying its subsea safety systems and well test equipment to the construction of many of the 52 wells now being plugged and abandoned.

“Having been involved in the development phase for many of these fields, we have gained a life of well experience that will be invaluable for this P&A campaign,” Farley adds. “Our expertise and know-how will help deliver key technical and commercial benefits for the client across the project.”