Leaders from across the energy value chain gathered in Houston for a roundtable to discuss tackling methane. Photo via Canva

Leaders from across the energy value chain gathered in Houston for a roundtable hosted by the Global Methane Hub (GMH) and the Houston Energy Transition Initiative (HETI). The session underscored the continued progress to reduce methane emissions as the energy industry addresses the dual challenge of producing more energy that the world demands while simultaneously reducing emissions.

The Industry’s Shared Commitment and Challenge

There’s broad recognition across the industry that methane emissions must be tackled with urgency, especially as natural gas demand is projected to grow 3050% by 2050. This growth makes reducing methane leakage more than a sustainability issue—it’s also a matter of global market access and investor confidence.

Solving this issue, however, requires overcoming technical challenges that span infrastructure, data acquisition, measurement precision, and regulatory alignment.

Getting the Data Right: Top-Down vs. Bottom-Up

Accurate methane leak monitoring and quantification is the cornerstone of any effective mitigation strategy. A key point of discussion was the differentiation between top-down and bottom-up measurement approaches.

Top-down methods such as satellite and aerial monitoring offer broad-area coverage and can identify large emission plumes. Technologies such as satellite-based remote sensing (e.g., using high-resolution imagery) or airborne methane surveys (using aircraft equipped with tunable diode laser absorption spectroscopy) are commonly used for wide-area detection. While these methods are efficient for identifying large-scale emission hotspots, their accuracy is lower when it comes to quantifying emissions at the source, detecting smaller, diffuse leaks, and providing continuous monitoring.

In contrast, bottom-up methods focus on direct, on-site detection at the equipment level, providing more granular and precise measurements. Technologies used here include optical gas imaging (OGI) cameras, flame ionization detectors (FID), and infrared sensors, which can directly detect methane at the point of release. These methods are more accurate but can be resource and infrastructure intensive, requiring frequent manual inspections or continuous monitoring installations, which can be costly and technically challenging in certain environments.

The challenge lies in combining both methods: top-down for large-scale monitoring and bottom-up for detailed, accurate measurements. No single technology is perfect or all-inclusive. An integrated approach that uses both datasets will help to create a more comprehensive picture of emissions and improve mitigation efforts.

From Detection to Action: Bridging the Gap

Data collection is just the first step—effective action follows. Operators are increasingly focused on real-time detection and mitigation. However, operational realities present obstacles. For example, real-time leak detection and repair (LDAR) systems—particularly for continuous monitoring—face challenges due to infrastructure limitations. Remote locations like the Permian Basin may lack the stable power sources needed to run continuous monitoring equipment to individual assets.

Policy, Incentives, and Regulatory Alignment

Another critical aspect of the conversation was the need for policy incentives that both promote best practices and accommodate operational constraints. Methane fees, introduced to penalize emissions, have faced widespread resistance due to their design flaws that in many cases actually disincentivize methane emissions reductions. Industry stakeholders are advocating for better alignment between policy frameworks and operational capabilities.

In the United States, the Subpart W rule, for example, mandates methane reporting for certain facilities, but its implementation has raised concerns about the accuracy of some of the new reporting requirements. Many in the industry continue to work with the EPA to update these regulations to ensure implementation meets desired legislative expectations.

The EU’s demand for quantified methane emissions for imported natural gas is another driving force, prompting a shift toward more detailed emissions accounting and better data transparency. Technologies that provide continuous, real-time monitoring and automated reporting will be crucial in meeting these international standards.

Looking Ahead: Innovation and Collaboration

The roundtable highlighted the critical importance of advancing methane detection and mitigation technologies and integrating them into broader emissions reduction strategies. The United States’ 45V tax policy—focused on incentivizing production of low-carbon intensity hydrogen often via reforming of natural gas—illustrates the growing momentum towards science-based accounting and transparent data management. To qualify for 45V incentives, operators can differentiate their lower emissions intensity natural gas by providing foreground data to the EPA that is precise and auditable, essential for the industry to meet both environmental and regulatory expectations. Ultimately, the success of methane reduction strategies depends on collaboration between the energy industry, technology providers, and regulators.

The roundtable underscored that while significant progress has been made in addressing methane emissions, technical, regulatory, and operational challenges remain. Collaboration across industry, government, and technology providers is essential to overcoming these barriers. With better data, regulatory alignment, and investments in new technologies, the energy sector can continue to reduce methane emissions while supporting global energy demands.

———

HETI thanks Chris Duffy, Baytown Blue Hydrogen Venture Executive, ExxonMobil; Cody Johnson, CEO, SCS Technologies; and Nishadi Davis, Head of Carbon Advisory Americas, wood plc, for their participation in this event.

This article originally appeared on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Seven projects from Houston companies were granted more than $41 million in federal and non-federal funding through the Methane Emissions Reduction Program. Photo via Canva

Houston companies scoop up $31 million in funds from DOE, EPA methane emissions program

fresh funds

The U.S. Department of Energy and the U.S. Environmental Protection Agency announced the selection of seven projects from Houston companies to receive funding through the Methane Emissions Reduction Program.

The projects are among 43 others nationwide, including 12 from Texas, that reduce, monitor, measure, and quantify methane emissions from the oil and gas sector. The DOE and EPA awarded $850 million in total through the program.

The Houston companies picked up $31.7 million in federal funding through the program in addition to more than $9.5 million in non-federal dollars.

“I’m excited about the opportunities these will create internally but even more so the creation of jobs and training opportunities for the communities in which we work,” Scott McCurdy, Encino Environmental Services CEO, said in a news release. His company received awards for two projects.

“These projects will allow us to further support and strengthen the U.S. Energy industry’s ability to deliver clean, reliable, and affordable energy globally,” he added.

The Houston-area awards included:

DaphneTech USA LLC

Total funding: $5.8 million (approximately $4.5 million in federal, $1.3 million in non-federal)

The award was granted for the company’s Daphne and Williams Methane Slip Abatement Plasma-Catalyst Scale-Up project. Daphne will study how its SlipPure technology, a novel exhaust gas cleaning system that abates methane and exhaust gas pollution from natural gas-fueled engines, can be economically viable across multiple engine types and operating conditions.

Baker Hughes Energy Transition LLC 

Total funding: $7.47 million (approximately $6 million in federal, $1.5 million in non-federal)

The award was granted for the company’s Advancing Low Cost CH4 Emissions Reduction from Flares through Large Scale Deployment of Retrofittable and Adaptive Technology project. The project aims to develop a scalable, integrated methane emissions reduction system for flares based on optical gas imaging and estimation algorithms.

Encino Environmental Services

Total funding: $15.17 million (approximately $11 million in federal, $4.17 million in non-federal)

The award was granted for two projects. The Advanced Methane Reduction System: Integrating Infrared and Visual Imaging to Assess Net Heating Value at the Combustion Zone and Determine Combustion Efficiency to Enhance Flaring Performance project aims to develop and deploy an advanced continuous emissions monitoring system. It’s Advancing Methane Emissions Reduction through Innovative Technology project will develop and deploy a technology using sensors and composite materials to address emissions originating in storage tanks.

Envana Software Solutions

Total funding: $5.26 million (approximately $4.2 million in federal, $1 million in non-federal)

The award was granted for the company’s Leak Detection and Reduction Software to Identify Methane Emissions and Trigger Mitigation at Oil and Gas Production Facilities Based on SCADA Data project. It aims to improve its Recon software for monitoring methane emissions and develop partnerships with local universities and organizations.

Capwell Services Inc.

Total funding: $4.19 million (approximately $3.3 million in federal, $837,000 in non-federal)

The award was granted for its Methane Emissions Abatement Technology for Low-Flow and Intermittent Emission Sources project. It aims to to deploy and field-test a methane abatement unit and improve air quality and health outcomes for communities near production facilities and establish field technician internships for local residents.

Blue Sky Measurements 

Total funding: $3.41 million (approximately $2.7 million in federal, $683,000 in non-federal)

The award was granted for its Field Validation of Novel Fixed Position Optical Sensor for Fugitive Methane Emission Detection Quantification and Location with Real-Time Notification for Rapid Mitigation project. It aims to field test an optical sensing technology at six well sites in the Permian Basin.

Southern Methodist University, The University of Texas at Austin, Texas A&M Engineering Experiment Station and Hyliion Inc. were other Texas-based organizations to earn awards. See the full list of projects here.

Envana Software Solutions' tech allows an oil and gas company to see a full inventory of greenhouse gases. Photo via Getty Images

Houston joint venture secures $5.2M for AI-powered methane tracking tech

fresh funds

Houston-based Envana Software Solutions has received more than $5.2 million in federal and non-federal funding to support the development of technology for the oil and gas sector to monitor and reduce methane emissions.

Thanks to the work backed by the new funding, Envana says its suite of emissions management software will become the industry's first technology to allow an oil and gas company to obtain a full inventory of greenhouse gases.

The funding comes from a more than $4.2 million grant from the U.S. Department of Energy (DOE) and more than $1 million in non-federal funding.

“Methane is many times more potent than carbon dioxide and is responsible for approximately one-third of the warming from greenhouse gases occurring today,” Brad Crabtree, assistant secretary at DOE, said in 2024.

With the funding, Envana will expand artificial intelligence (AI) and physics-based models to help detect and track methane emissions at oil and gas facilities.

“We’re excited to strengthen our position as a leader in emissions and carbon management by integrating critical scientific and operational capabilities. These advancements will empower operators to achieve their methane mitigation targets, fulfill their sustainability objectives, and uphold their ESG commitments with greater efficiency and impact,” says Nagaraj Srinivasan, co-lead director of Envana.

In conjunction with this newly funded project, Envana will team up with universities and industry associations in Texas to:

  • Advance work on the mitigation of methane emissions
  • Set up internship programs
  • Boost workforce development
  • Promote environmental causes

Envana, a software-as-a-service (SaaS) startup, provides emissions management technology to forecast, track, measure and report industrial data for greenhouse gas emissions.

Founded in 2023, Envana is a joint venture between Houston-based Halliburton, a provider of products and services for the energy industry, and New York City-based Siguler Guff, a private equity firm. Siguler Gulf maintains an office in Houston.

“Envana provides breakthrough SaaS emissions management solutions and is the latest example of how innovation adds to sustainability in the oil and gas industry,” Rami Yassine, a senior vice president at Halliburton, said when the joint venture was announced.

Some of those counties affected include production hot spots within the San Juan Basin in northwestern New Mexico and the Permian Basin, which straddles the New Mexico-Texas line. Photo via Getty Images

New Mexico court upholds emissions crackdown impacting oil, gas operations along Texas border

eyes on the west

The New Mexico Court of Appeals has upheld regulations aimed at cracking down on emissions in one of the nation’s top-producing oil and gas states.

The case centered on a rule adopted in 2022 by state regulators that called for curbing the pollutants that chemically react in the presence of sunlight to create ground-level ozone, commonly known as smog. High ozone levels can cause respiratory problems, including asthma and chronic bronchitis.

Democratic Gov. Michelle Lujan Grisham's administration has long argued that the adoption of the ozone precursor rule along with regulations to limit methane emissions from the industry were necessary to combat climate change and meet federal clean air standards.

New Mexico Environment Secretary James Kenney said the court's decision on Wednesday affirmed that the rule was properly developed and there was substantial evidence to back up its approval by regulators.

“These rules aren’t going anywhere,” Kenney said in a statement to The New Mexican, suggesting that the industry stop spending resources on legal challenges and start working to comply with New Mexico's requirements.

The Independent Petroleum Association of New Mexico had argued in its appeal that the rule disproportionately affected independent operators.

“The administration needs to stop its ‘death by a thousand cuts’ hostility to the smaller, family-owned, New Mexico-based operators,” the group's executive director, Jim Winchester, said in an email to the newspaper.

The group is considering its legal options.

Under the rule, oil and gas operators must monitor emissions for smog-causing pollutants — nitrogen oxides and volatile organic compounds — and regularly check for and fix leaks.

The rule applies to eight counties — Chaves, Doña Ana, Eddy, Lea, Rio Arriba, Sandoval, San Juan and Valencia — where ozone pollutants have reached at least 95% of the federal ambient air quality standard. Some of those counties include production hot spots within the San Juan Basin in northwestern New Mexico and the Permian Basin, which straddles the New Mexico-Texas line.

The industry group had argued that Chaves and Rio Arriba counties shouldn’t be included. The court disagreed, saying those counties are located within broader geographic regions that did hit that 95% threshold.

The new initiative will take stranded natural gas and turn it into hydrogen. Photo via Getty Images

New York financial firm partners with Houston O&G co. to turn natural gas into blue hydrogen

teamwork

A new partnership between an energy and sustainability investor and a Houston-based company that focuses on cleaner solutions in the oil and gas industry will look into turning stranded natural gas into blue hydrogen.

New York-based Double Zero Holdings and SJ Environmental announced their new partnership this week in an effort to move forward the energy transition. According to the companies, stranded natural gas — mostly methane — usually remains unused where it is not economically viable to transport. By turning these gasses into into blue hydrogen, "the partnership mitigates methane and CO2 emissions while producing hydrogen—a clean fuel that could revolutionize multiple industries," reads the news release.

The initiative will use existing technologies, which can be reduced to the size of a standard shipping container, per the release.

"We're thrilled to partner with SJ Environmental to tackle one of the most pressing environmental issues today," Raja Ramachandran, managing partner of Double Zero Holdings, says in the release. "This collaboration allows us to turn stranded natural gas—a significant environmental liability—into a valuable resource, supporting the global shift toward cleaner energy."

The plan is to lower the amount of natural gas left wasted and provide a low-carbon alternative across transportation, manufacturing, and power generation.

"Our collaboration with Double Zero Holdings reflects our commitment to innovative, sustainable solutions," SJ Environmental Director John Chappell adds. "Together, we're setting a new standard for energy production, delivering hydrogen and food-grade CO₂ where natural gas would typically be flared."

bp is now using Baker Hughes emissions abatement technology, flare.IQ, to quantify methane emissions from its flares. Photo via Canva

Baker Hughes, bp team up on flare emissions monitoring tech

partnerships

Two energy companies with Houston headquarters are collaborating on flare emissions monitoring.

According to a news release, bp is now using Baker Hughes emissions abatement technology, flare.IQ, to quantify "methane emissions from its flares, a new application for the upstream oil and gas sector." The statement goes on to explain that the industry doesn't have a to methane emission quantifying, and that bp ad Baker Hughes has facilitated a large, full-scale series of studies on the technology.

Now, bp is utilizing 65 flares across seven regions to reduce emissions.

“bp’s transformation is underway, turning strategy into action through delivery of our targets and aims. We don’t have all the answers, and we certainly can’t do this on our own," Fawaz Bitar, bp senior vice president of Health Safety Environment & Carbon, says in the release. "Through our long-standing partnership with Baker Hughes, we have progressed technology and implemented methane quantification for oil and gas flares, helping us to achieve the first milestone of our Aim 4. We continue to look at opportunities like this, where we can collaborate across the industry to find solutions to our biggest challenges."

The flare.IQ technology is a part of Baker Hughes’ Panametrics product line portfolio, and it builds on 40 years of ultrasonic flare metering technology experience. The advanced analytics platform provides operators with real-time, decision-making data.

“Our collaboration with bp is an important landmark and a further illustration that technology is a key enabler for addressing the energy trilemma of security, sustainability and affordability,” Ganesh Ramaswamy, executive vice president of Industrial & Energy Technology at Baker Hughes, says in the release. “As a leader in developing climate technology solutions, such as our flare.IQ emissions monitoring and abatement technology, cooperations like the one we have with bp are key to testing and validating in the field solutions that can enable operators to achieve emissions reduction goals efficiently and economically.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Nominate Houston's energy trailblazers for the 2025 Innovation Awards

Awards Season

Calling all Houston energy innovators: The Houston Innovation Awards return this fall to celebrate the best and brightest in the Houston innovation ecosystem, and that includes those leading the energy transition.

Presented by InnovationMap, the fifth annual Houston Innovation Awards will take place November 5 at TMC Helix Park.

The awards program will honor the top startups and innovators in Houston across 10 categories, and we're asking you to nominate the most deserving Houston innovators and innovative companies, including those in the energy transition sector.

This year's categories are:

  • Minority-founded Business, honoring an innovative startup founded or co-founded by BIPOC or LGBTQ+ representation.
  • Female-founded Business, honoring an innovative startup founded or co-founded by a woman.
  • Energy Transition Business, honoring an innovative startup providing a solution within renewables, climatetech, clean energy, alternative materials, circular economy, and beyond.
  • Health Tech Business, honoring an innovative startup within the health and medical technology sectors.
  • Deep Tech Business, honoring an innovative startup providing technology solutions based on substantial scientific or engineering challenges, including those in the AI, robotics, and space sectors.
  • Startup of the Year (People's Choice), honoring a startup celebrating a recent milestone or success. The winner will be selected by the community via an interactive voting experience.
  • Scaleup of the Year, honoring an innovative later-stage startup that's recently reached a significant milestone in company growth.
  • Incubator/Accelerator of the Year, honoring a local incubator or accelerator that is championing and fueling the growth of Houston startups.
  • Mentor of the Year, honoring an individual who dedicates their time and expertise to guide and support budding entrepreneurs.
  • Trailblazer, honoring an innovator who's made a lasting impact on the Houston innovation community.

Nominations may be made on behalf of yourself, your organization, and other leaders and institutions in the local innovation scene. The nomination period closes on August 31, so don't delay — nominate today at this link, or fill out the embedded form below.

A panel of esteemed judges will review the nominations, and determine the finalists and winners. Finalists will be unveiled on InnovationMap.com on September 30, and the 2025 Houston Innovation Awards winners will be announced live at an event on November 5.

Tickets will go on sale this fall. Stay tuned for that announcement.

Interested in Innovation Awards sponsorship opportunities? Please contact sales@innovationmap.com.

UH launches latest micro-credential program focused on energy risks

coming soon

UH Energy at the University of Houston will launch a new micro-credential program this fall focused on risks associated with today's changing energy landscape.

The new self-paced, hybrid program, known as Managing Non-Technical Risks in Energy, is geared towards energy professionals and those who aspire to work in the industry. Enrollment must be completed by Sept. 15 to participate.

According to UH, it will equip participants with "tools, strategies, and real-world insights needed to lead confidently" as they face pressure to meet increased energy demand while also operating under sustainable guidelines.

The program will be led by expert instructors, including:


  • Suryanarayanan Radhakrishnan, Managing Director of UH Energy
  • Amy Mifflin, Principal Consultant and Partner at Sustrio Inc.
  • Chris Angelides, Honorary Consul of The Republic of Cyprus to Texas, Managing Director at Ernst & Young LLP
  • Carolina Ortega, Vice President, Sustainability and Communications at Milestone Environmental Services
  • Krish (Ravi) Ravishankar, Senior Director ESG Analytics & Reporting, Sustainability, Worldwide Environmental Affairs at Oxy

Participants can earn up to three "badges" through the program. Each badge consists of two modules, which can be completed virtually and take about 10 hours to complete over four weeks.

Each module will also include one in-person engagement session that will last about two hours.

The three badges include:


  • Badge 1: Managing Environmental and Social Risks and Impacts
  • Badge 2: Frameworks, Standards, and Implementation
  • Badge 3: Advanced Applications

Badges can be earned individually or as a series of three, and participants must complete assessments to earn each badge.

Badge 1 Module 1 will start on Sept. 15, followed by Badge 1 Module 2 on Oct. 20. Find more information here.