The Houston Airport System announced a Memorandum of Understanding with Wisk Aero, a fully-owned subsidiary of Boeing. Photo via wisk.aero

A fleet of electric and autonomous air taxis is expected to take flight in Houston, thanks to a partnership between a California startup and the Houston Airport System.

HAS announced a Memorandum of Understanding with Wisk Aero, a fully-owned subsidiary of Boeing, which recently announced a similar partnership with the city of Sugar Land. For the next year, the company will identify vertiport infrastructure at Houston's three airports — George Bush Intercontinental Airport, William P. Hobby Airport, and Ellington Airport.

“During my time in the Texas senate, I voted for legislation supporting advanced air mobility. This public-private partnership marks a significant step forward for the City of Houston as we invest in innovative and sustainable modes of air transportation,” Houston Mayor John Whitmire says in a statement. “The collaboration underscores our commitment to pioneer advancements that will shape the future of urban mobility.”

Wisk will also develop Houston-area relationships and chart out flight paths for self-flying, electric vertical takeoff and landing (eVTOL) air taxis. The company's Generation 6 aircraft is autonomous, but a human supervisor remotely oversees every flight.

"Houston is at the forefront of aviation and aerospace innovation, so it’s only fitting that Houston Airports take the first steps to explore the next generation of air transportation,” says Jim Szczesniak, director of aviation for Houston Airports. “Our partnership with Wisk represents a bold step towards revolutionizing air mobility not just within our city, but across the entire Greater Houston region."

Earlier this year, Wisk partnered in a similar capacity with Sugar Land. The company and HAS will also work with the Federal Aviation Administration on this initiative.

“Our partnership with Houston Airports solidifies Wisk’s commitment to creating new and efficient ways to travel within the Greater Houston area and furthers our relationship with infrastructure and regulatory partners in the region," adds Brian Yutko, CEO at Wisk. “Connecting suburbs to Houston’s airports, business centers and prime tourist destinations through autonomous, sustainable air travel will create a new form of urban mobility and have tremendous economic and workforce impacts, supporting the growth of the Houston region.”

In addition to early infrastructure planning for maintenance and training facilities in Houston, the partnership means Houston Airports and Wisk will collaborate on integrating AAM into HAS's long-term plans.

———

This article originally ran on InnovationMap.

The study will look at improving sustainability within George Bush Intercontinental Airport in Houston. Photo courtesy of Airbus

Airbus, Houston organizations launch study to explore hydrogen-powered travel

ready for takeoff

A few major players have teamed up to look into making air travel more sustainable — and it's all happening in Houston.

The Center for Houston’s Future, Airbus, and Houston Airports have signed a memorandum of understanding intended to study the “feasibility of a hydrogen hub at George Bush Intercontinental Airport." The study, which will conclude in March of 2025, will include the participants that will collaborate ways to rethink how their infrastructures could be designed and operated to reduce an overall environmental footprint, and lead to hydrogen-powered aircrafts like the ones Airbus plans to bring to fruition by 2035.

In 2020, Airbus debuted its ZEROe hydrogen-powered aircraft project. The “Hydrogen Hub at Airports'' concept by Airbus unites key airport ecosystem players to develop ways to decarbonize all airport-associated infrastructure with hydrogen. The study will include airport ground transportation, airport heating, end-use in aviation, and possibly ways to supply adjacent customers in transport and local industries.

The use of hydrogen to power future aircraft aims to assist in eliminating aircraft CO2 emissions in the air, and also can help decarbonize air transport on the ground. With Houston being such a large city, and a destination for some many visiting on business, the Houston airports was an easy spot to assign the study.

"Houston’s airports are experiencing tremendous growth, connecting our city to the world like never before,” Jim Szczesniak, the aviation director for the city of Houston, says in a news release. “As we continue to expand and modernize our facilities, participating in this sustainability study is crucial. Continuing to build a sustainable airport system will ensure a healthy future for Houston, attract top talent and businesses, and demonstrate our commitment to being a responsible global citizen.

"This study will provide us with valuable insights to guide our development and position Houston as a global leader in sustainable aviation innovation for generations to come.”

The CHF was a founding organizer of the HyVelocity Hydrogen Hub, which was selected by the U.S. Department of Energy as one of seven hydrogen hubs in the nation, and will work in the Houston area and the Gulf Coast. The HyVelocity Hydrogen Hub is eligible to receive up to $1.2 billion as part of a Bipartisan Infrastructure Law funding to advance domestic hydrogen production.

“The Center for Houston’s Future is pleased to have played a crucial role in bringing together the partners for this study,” Brett Perlman, the center's outgoing CEO and president, adds. “With Houston’s role as the world’s energy capital, our record of energy innovation and desire to lead in the business of low-carbon energy, Houston is the perfect place to develop our airports as North American clean hydrogen pioneers.

———

This article originally ran on InnovationMap.

Houston's airports are looking more and more green. Photo via fly2houston.org

Houston airports land $12.5M for green projects, announce new EV fleet

seeing green

Houston Airports will receive funding from The Federal Aviation Administration in the next few months on projects aimed at reducing greenhouse gas emissions and implementing the administration's climate challenge guidance at its hubs.

The funds — about $12.5 million — come from the FAA's FY2022 Airport Improvement Program Supplemental Discretionary Grant Competition and are slated to be rolled-out by September 2024. Projects at George Bush Intercontinental and Hobby airports were among 79 projects around the country, which the FAA granted about $268 million to in total.

“Houston Airports is committed to reducing our environmental impact while also protecting the planet as we expand our global reach. These FAA grants fund our ability to invest in smart and sustainable solutions” Jim Szczesniak, COO for Houston Airports, said in a statement. “The end result of these projects will be a more resilient, efficient and sustainable airport system that aligns with the goal of Houston Airports to achieve carbon neutrality by 2030.”

IAH received $10.3 million for two projects that will replace existing generators and fund an energy audit to find energy and water use efficiencies at the airport, as well as "define actionable steps to reduce greenhouse gas emissions across the airfield and the airport's buildings," according to the statement.

Hobby received $2.1 million to also go towards an energy audit and to create a Resiliency Master Plan to help mitigate the impacts of climate change, severe weather and floods in a sustainable way.

Separate from the FAA funds, Houston airports also announced in recent weeks that it will add an all-electric fleet of vehicles for its six airport locations by the end of 2023.

According to a release from HAS, ground operations are a major source of the aviation industry's carbon footprint.

The fleet will include 25 Ford F-150 Lightnings, which can travel up to 320 miles on a full charge. HAS's maintenance team planned to install 11 Level 2 charging stations to support the fleet at its airports this summer.

These updates are all part of HAS's Sustainable Management Plan, which aims to get the system to carbon neutrality by 2030.

Earlier this year, Hertz Electrifies Houston, in partnership with bp pulse, announced that it would install a new EV fast-charging hub to Hobby Airport that's designed to serve ride-hail, taxi fleets and the general public. The initiative, which was formed by The Hertz Corp. and the City of Houston, also aimed to bring 2,100 rental electric vehicles to Houston.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Spring-based private equity firm acquires West Texas wind farm

power deal

Spring-based private equity firm Arroyo Investors has teamed up with ONCEnergy, a Portland, Oregon-based developer of clean energy projects, to buy a 60-megawatt wind farm southeast of Amarillo.

Skyline Renewables, which acquired the site, known as the Whirlwind Energy Center, in 2018, was the seller. The purchase price wasn’t disclosed.

Whirlwind Energy Center, located in Floyd County, West Texas, comprises 26 utility-scale wind turbines. The wind farm, built in 2007, supplies power to Austin Energy.

“The acquisition reflects our focus on value-driven investments with strong counterparties, a solid operating track record, and clear relevance to markets with growing capacity needs,” Brandon Wax, a partner at Arroyo, said in a press release. “Partnering with ONCEnergy allows us to leverage deep operational expertise while expanding our investment footprint in the market.”

Arroyo focuses on energy infrastructure investments in the Americas. Its portfolio includes Spring-based Seaside LNG, which produces liquefied natural gas and LNG transportation services.

Last year, Arroyo closed an investment fund with more than $1 billion in total equity commitments.

Since its launch in 2003, Arroyo has “remained committed to investing in high-quality assets, creating value and positioning assets for exit within our expected hold period,” founding partner Chuck Jordan said in 2022.

$524M Texas Hill Country solar project powered by Hyundai kicks off

powering up

Corporate partners—including Hyundai Engineering & Construction, which maintains a Houston office—kicked off a $524 million solar power project in the Texas Hill Country on Jan. 27.

The 350-megawatt, utility-scale Lucy Solar Project is scheduled to go online in mid-2027 and represents one of the largest South Korean-led investments in U.S. renewable energy.

The solar farm, located on nearly 2,900 acres of ranchland in Concho County, will generate 926 gigawatt-hours of solar power each year. That’s enough solar power to supply electricity to roughly 65,000 homes in Texas.

Power to be produced by the hundreds of thousands of the project’s solar panels has already been sold through long-term deals to buyers such as Starbucks, Workday and Plano-based Toyota Motor North America.

The project is Hyundai Engineering & Construction’s largest solar power initiative outside Asia.

“The project is significant because it’s the first time Hyundai E&C has moved beyond its traditional focus on overseas government contracts to solidify its position in the global project financing market,” the company, which is supplying solar modules for the project, says on its website.

Aside from Hyundai Engineering & Construction, a subsidiary of automaker Hyundai, Korean and U.S. partners in the solar project include Korea Midland Power, the Korea Overseas Infrastructure & Urban Development Corp., solar panel manufacturer Topsun, investment firm EIP Asset Management, Primoris Renewable Energy and High Road Energy Marketing.

Primoris Renewable Energy is an Aurora, Colorado-based subsidiary of Dallas-based Primoris Services Corp. Another subsidiary, Primoris Energy Services, is based in Houston.

High Road is based in the Austin suburb of West Lake Hills.

“The Lucy Solar Project shows how international collaboration can deliver local economic development and clean power for Texas communities and businesses,” says a press release from the project’s partners.

Elon Musk vows to put data centers in space and run them on solar power

Outer Space

Elon Musk vowed this week to upend another industry just as he did with cars and rockets — and once again he's taking on long odds.

The world's richest man said he wants to put as many as a million satellites into orbit to form vast, solar-powered data centers in space — a move to allow expanded use of artificial intelligence and chatbots without triggering blackouts and sending utility bills soaring.

To finance that effort, Musk combined SpaceX with his AI business on Monday, February 2, and plans a big initial public offering of the combined company.

“Space-based AI is obviously the only way to scale,” Musk wrote on SpaceX’s website, adding about his solar ambitions, “It’s always sunny in space!”

But scientists and industry experts say even Musk — who outsmarted Detroit to turn Tesla into the world’s most valuable automaker — faces formidable technical, financial and environmental obstacles.

Feeling the heat

Capturing the sun’s energy from space to run chatbots and other AI tools would ease pressure on power grids and cut demand for sprawling computing warehouses that are consuming farms and forests and vast amounts of water to cool.

But space presents its own set of problems.

Data centers generate enormous heat. Space seems to offer a solution because it is cold. But it is also a vacuum, trapping heat inside objects in the same way that a Thermos keeps coffee hot using double walls with no air between them.

“An uncooled computer chip in space would overheat and melt much faster than one on Earth,” said Josep Jornet, a computer and electrical engineering professor at Northeastern University.

One fix is to build giant radiator panels that glow in infrared light to push the heat “out into the dark void,” says Jornet, noting that the technology has worked on a small scale, including on the International Space Station. But for Musk's data centers, he says, it would require an array of “massive, fragile structures that have never been built before.”

Floating debris

Then there is space junk.

A single malfunctioning satellite breaking down or losing orbit could trigger a cascade of collisions, potentially disrupting emergency communications, weather forecasting and other services.

Musk noted in a recent regulatory filing that he has had only one “low-velocity debris generating event" in seven years running Starlink, his satellite communications network. Starlink has operated about 10,000 satellites — but that's a fraction of the million or so he now plans to put in space.

“We could reach a tipping point where the chance of collision is going to be too great," said University at Buffalo's John Crassidis, a former NASA engineer. “And these objects are going fast -- 17,500 miles per hour. There could be very violent collisions."

No repair crews

Even without collisions, satellites fail, chips degrade, parts break.

Special GPU graphics chips used by AI companies, for instance, can become damaged and need to be replaced.

“On Earth, what you would do is send someone down to the data center," said Baiju Bhatt, CEO of Aetherflux, a space-based solar energy company. "You replace the server, you replace the GPU, you’d do some surgery on that thing and you’d slide it back in.”

But no such repair crew exists in orbit, and those GPUs in space could get damaged due to their exposure to high-energy particles from the sun.

Bhatt says one workaround is to overprovision the satellite with extra chips to replace the ones that fail. But that’s an expensive proposition given they are likely to cost tens of thousands of dollars each, and current Starlink satellites only have a lifespan of about five years.

Competition — and leverage

Musk is not alone trying to solve these problems.

A company in Redmond, Washington, called Starcloud, launched a satellite in November carrying a single Nvidia-made AI computer chip to test out how it would fare in space. Google is exploring orbital data centers in a venture it calls Project Suncatcher. And Jeff Bezos’ Blue Origin announced plans in January for a constellation of more than 5,000 satellites to start launching late next year, though its focus has been more on communications than AI.

Still, Musk has an edge: He's got rockets.

Starcloud had to use one of his Falcon rockets to put its chip in space last year. Aetherflux plans to send a set of chips it calls a Galactic Brain to space on a SpaceX rocket later this year. And Google may also need to turn to Musk to get its first two planned prototype satellites off the ground by early next year.

Pierre Lionnet, a research director at the trade association Eurospace, says Musk routinely charges rivals far more than he charges himself —- as much as $20,000 per kilo of payload versus $2,000 internally.

He said Musk’s announcements this week signal that he plans to use that advantage to win this new space race.

“When he says we are going to put these data centers in space, it’s a way of telling the others we will keep these low launch costs for myself,” said Lionnet. “It’s a kind of powerplay.”