"Companies and stakeholders across the energy spectrum need to act together and act fast." Photo via Getty Images

Houston is home to some of the nation's largest oil and gas exploration and production firms, making it one of the world’s most important energy capitals. Growing regional support for pioneering clean tech, such as carbon capture, will help achieve the crucial transition to net zero whilst maintaining economic stability, boosting local industries and creating jobs.

According to the International Energy Agency (IEA), North America and Asia Pacific are expected to hold the largest share in carbon capture capacity. North America’s world-leading carbon capture potential comes as no surprise given the nation’s dominance in oil and gas, and ideal geology for sequestration.

The IEA’s recently published World Energy Outlook 2023 depicts a global market that is in transition. With more companies, world leaders and governments recognizing that a shift towards sustainable energy is both inevitable and transformative, the question is no longer whether we switch to clean energy, but rather how soon the transition can happen.

For every $1 in investment spending on fossil fuels globally, $1.8 is now being spent to develop clean energy, according to the IEA. Although the clean energy market has almost doubled in the past five years to reach an estimated $2.8 trillion in 2023, investment needs to hit $4.2 trillion per year by 2030 to achieve the universally shared goal of net zero. The IEA believes around 1 Gigaton of CO2 must be captured in 2030, rising to 6 Gigatons by 2050 to achieve the Net Zero Emissions by 2050 Scenario (termed NZE Scenario). This presents a tremendous opportunity for government stakeholders and the business community in Houston to turbocharge the economy and protect the planet from the impact of climate change.

While volatility around the energy market lingers, sustainable technologies remain one of the most dynamic areas of global energy investment. An essential ingredient to its success is bringing on board innovators, entrepreneurs, corporations, and financiers to ensure technology innovation is front and center in facilitating the clean energy transition.

Carbon capture technology is critical, but energy leaders and hard-to-abate industries are under pressure to move faster. To do that, the carbon capture industry must scale up its deployment and increase adoption if hard-to-abate sectors are to address the 30 percent of global CO2 emissions for which they are responsible. Governments have a pivotal role to play in providing financial, regulatory and policy incentives, facilitating a collaborative environment between financiers, hard-to-abate operators, and clean tech companies. While we are moving in the right direction, there is no room for complacency or procrastination given the short timescales for meaningful action.

Over the past several years, Carbon Clean, a global company that is revolutionizing carbon capture, has enjoyed significant expansion in North America. Following the passage of the Inflation Reduction Act (IRA) in August 2022, we saw huge interest in our modular industrial carbon capture technology almost overnight, resulting in a 64 percent increase in inquiries from the U.S. To meet this booming demand, we have opened a U.S. headquarters in Houston, and have plans to double our U.S. headcount to meet industry requirements for our scalable and cost-effective technology, CycloneCC. In short, the United States is poised to become our biggest market. Given our latest lead investor and partner is Houston-based Chevron New Energies, there is no better place than Houston to drive innovation in the country’s energy sector.

The IRA did more than just bring in new inquiries for our breakthrough technology – it also signaled to the energy sector that the federal government is getting serious about bringing emissions down. The impact of the IRA cannot be overstated, especially for the point-source carbon capture technology pioneered by Carbon Clean. While the IRA involves billions of dollars of public investment, it is set up in such a way that companies must make substantial investments first, acting as a down payment on fostering jobs and ensuring the business community is delivering ambitious climate action. The benefits are being felt locally as well – cities like Houston are at the forefront of what the IRA has to offer, taking advantage of these investments and reducing emissions.

Companies and stakeholders across the energy spectrum need to act together and act fast. With the dramatic growth required for carbon capture to have full effect, it will be essential for government, industry, and innovators to join together to concentrate on a number of projects and clusters. We are confident that with new cutting-edge technology and broad collaboration we can rapidly get the world on the right path to net zero.

———

Prateek Bumb is CTO and co-founder of Carbon Clean and the principal innovator of Carbon Clean’s industrial carbon capture technologies.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston companies scoop up $31M in funds from DOE, EPA methane emissions program

fresh funds

The U.S. Department of Energy and the U.S. Environmental Protection Agency announced the selection of seven projects from Houston companies to receive funding through the Methane Emissions Reduction Program.

The projects are among 43 others nationwide, including 12 from Texas, that reduce, monitor, measure, and quantify methane emissions from the oil and gas sector. The DOE and EPA awarded $850 million in total through the program.

The Houston companies picked up $31.7 million in federal funding through the program in addition to more than $9.5 million in non-federal dollars.

“I’m excited about the opportunities these will create internally but even more so the creation of jobs and training opportunities for the communities in which we work,” Scott McCurdy, Encino Environmental Services CEO, said in a news release. His company received awards for two projects.

“These projects will allow us to further support and strengthen the U.S. Energy industry’s ability to deliver clean, reliable, and affordable energy globally,” he added.

The Houston-area awards included:

DaphneTech USA LLC

Total funding: $5.8 million (approximately $4.5 million in federal, $1.3 million in non-federal)

The award was granted for the company’s Daphne and Williams Methane Slip Abatement Plasma-Catalyst Scale-Up project. Daphne will study how its SlipPure technology, a novel exhaust gas cleaning system that abates methane and exhaust gas pollution from natural gas-fueled engines, can be economically viable across multiple engine types and operating conditions.

Baker Hughes Energy Transition LLC 

Total funding: $7.47 million (approximately $6 million in federal, $1.5 million in non-federal)

The award was granted for the company’s Advancing Low Cost CH4 Emissions Reduction from Flares through Large Scale Deployment of Retrofittable and Adaptive Technology project. The project aims to develop a scalable, integrated methane emissions reduction system for flares based on optical gas imaging and estimation algorithms.

Encino Environmental Services

Total funding: $15.17 million (approximately $11 million in federal, $4.17 million in non-federal)

The award was granted for two projects. The Advanced Methane Reduction System: Integrating Infrared and Visual Imaging to Assess Net Heating Value at the Combustion Zone and Determine Combustion Efficiency to Enhance Flaring Performance project aims to develop and deploy an advanced continuous emissions monitoring system. It’s Advancing Methane Emissions Reduction through Innovative Technology project will develop and deploy a technology using sensors and composite materials to address emissions originating in storage tanks.

Envana Software Solutions

Total funding: $5.26 million (approximately $4.2 million in federal, $1 million in non-federal)

The award was granted for the company’s Leak Detection and Reduction Software to Identify Methane Emissions and Trigger Mitigation at Oil and Gas Production Facilities Based on SCADA Data project. It aims to improve its Recon software for monitoring methane emissions and develop partnerships with local universities and organizations.

Capwell Services Inc.

Total funding: $4.19 million (approximately $3.3 million in federal, $837,000 in non-federal)

The award was granted for its Methane Emissions Abatement Technology for Low-Flow and Intermittent Emission Sources project. It aims to to deploy and field-test a methane abatement unit and improve air quality and health outcomes for communities near production facilities and establish field technician internships for local residents.

Blue Sky Measurements 

Total funding: $3.41 million (approximately $2.7 million in federal, $683,000 in non-federal)

The award was granted for its Field Validation of Novel Fixed Position Optical Sensor for Fugitive Methane Emission Detection Quantification and Location with Real-Time Notification for Rapid Mitigation project. It aims to field test an optical sensing technology at six well sites in the Permian Basin.

Southern Methodist University, The University of Texas at Austin, Texas A&M Engineering Experiment Station and Hyliion Inc. were other Texas-based organizations to earn awards.

See the full list of projects here.

Texas university's 'WaterHub' will dramatically reduce water usage by 40%

Sustainable Move

A major advancement in sustainability is coming to one Texas university. A new UT WaterHub at the University of Texas at Austin will be the largest facility of its kind in the U.S. and will transform how the university manages its water resources.

It's designed to work with natural processes instead of against them for water savings of an estimated 40 percent. It's slated for completion in late 2027.

The university has had an active water recovery program since the 1980s. Still, water is becoming an increasing concern in Austin. According to Texas Living Waters, a coalition of conservation groups, Texas loses enough water annually to fill Lady Bird Lake roughly 89 times over.

As Austin continues to expand and face water shortages, the region's water supply faces increased pressure. The UT WaterHub plans to address this challenge by recycling water for campus energy operations, helping preserve water resources for both the university and local communities.

The 9,600-square-foot water treatment facility will use an innovative filtration approach. To reduce reliance on expensive machinery and chemicals, the system uses plants to naturally filter water and gravity to pull it in the direction it needs to go. Used water will be gathered from a new collection point near the Darrell K Royal Texas Memorial Stadium and transported to the WaterHub, located in the heart of the engineering district. The facility's design includes a greenhouse viewable to the public, serving as an interactive learning space.

Beyond water conservation, the facility is designed to protect the university against extreme weather events like winter storms. This new initiative will create a reliable backup water supply while decreasing university water usage, and will even reduce wastewater sent to the city by up to 70 percent.

H2O Innovation, UT’s collaborator in this project, specializes in water solutions, helping organizations manage their water efficiently.

"By combining cutting-edge technology with our innovative financing approach, we’re making it easier for organizations to adopt sustainable water practices that benefit both their bottom line and the environment, paving a step forward in water positivity,” said H2O Innovation president and CEO Frédéric Dugré in a press release.

The university expects significant cost savings with this project, since it won't have to spend as much on buying water from the city or paying fees to dispose of used water. Over the next several years, this could add up to millions of dollars.

---

A version of this story originally appeared on our sister site, CultureMap Austin.

Report: Texas solar power, battery storage helped stabilize grid in summer 2024, but challenges remain

by the numbers

Research from the Federal Reserve Bank of Dallas shows that solar power and battery storage capacity helped stabilize Texas’ electric grid last summer.

Between June 1 and Aug. 31, solar power met nearly 25 percent of midday electricity demand within the Electric Reliability Council of Texas (ERCOT) power grid. Rising solar and battery output in ERCOT assisted Texans during a summer of triple-digit heat and record load demands, but the report fears that the state’s power load will be “pushed to its limits” soon.

The report examined how the grid performed during more demanding hours. At peak times, between 11 a.m. and 2 p.m. in the summer of 2024, solar output averaged nearly 17,000 megawatts compared with 12,000 megawatts during those hours in the previous year. Between 6 p.m. and 9 p.m., discharge from battery facilities averaged 714 megawatts in 2024 after averaging 238 megawatts for those hours in 2023. Solar and battery output have continued to grow since then, according to the report.

“Batteries made a meaningful contribution to what those shoulder periods look like and how much scarcity we get into during these peak events,” ERCOT CEO Pablo Vegas said at a board of directors conference call.

Increases in capacity from solar and battery-storage power in 2024 also eclipsed those of 2023. In 2023 ECOT added 4,570 megawatts of solar, compared to adding nearly 9,700 megawatts in 2024. Growth in battery storage capacity also increased from about 1,500 megawatts added in 2023 to more than 4,000 megawatts added in 2024. Natural gas capacity also saw increases while wind capacity dropped by about 50 percent.

Texas’ installation of utility-scale solar surpassed California’s in the spring of last year, and jumped from 1,900 megawatts in 2019 to over 20,000 megawatts in 2024 with solar meeting about 50 percent of Texas' peak power demand during some days.

While the numbers are encouraging, the report states that there could be future challenges, as more generating capacity will be required due to data center construction and broader electrification trends. The development of generating more capacity will rely on multiple factors like price signals and market conditions that invite more baseload and dispatchable generating capacity, which includes longer-duration batteries, and investment in power purchase agreements and other power arrangements by large-scale consumers, according to the report.

Additionally, peak demand during winter freezes presents challenges not seen in the summer. For example, in colder months, peak electricity demand often occurs in the early morning before solar energy is available, and it predicts that current battery storage may be insufficient to meet the demand. The analysis indicated a 50% chance of rolling outages during a cold snap similar to December 2022 and an 80% chance if conditions mirror the February 2021 deep freeze at the grid’s current state.

The report also claimed that ERCOT’s energy-only market design and new incentive structures, such as the Texas Energy Fund, do not appear to be enough to meet the predicted future magnitude and speed of load growth.

Read the full report here.