When examining how you can better prepare and respond to ongoing climate-related challenges, the CRE community needs to prioritize marginalized communities that are already experiencing most of the negative impacts. Photography by Peter Molick

Houston is no stranger to hurricanes, and in recent years winter storms have become an increasing concern. Following the winter freeze in 2021, more than 4 million Texans were left without power, water, or heat. The state’s infrastructure system was adversely impacted concurrently — including workplaces, hospitals, transportation, homes, drinking water distribution, electric power generation, agriculture, and grocery stores. Now, a new potential disaster is on the horizon. Recent research shows Houston is most likely to be affected by wildfires, a climate-related challenge that our city has not previously faced.

According to the Gensler Research Institute’s 2022 U.S. Climate Action Survey, since 2019, only 18 percent of Americans believe their communities are built to withstand climate change. The good news is Americans overwhelmingly agree that addressing climate change is urgent. The question many are asking is — “How can we take action to better prepare buildings and cities to weather the climate challenge?” The solution is simple. In order to understand where we need to go, we must understand how we got here.

With a population that has more than doubled in the past 50 years, it is challenging for most Houstonians to imagine a time when The Bayou City was nothing more than agricultural lands and oil fields. Today, Houston is known for being the fourth-most populous city in the United States. It is a sprawling concrete jungle home to the world’s largest concentration of healthcare and research institutions. When reflecting on the past 50 years, one can’t help but evaluate the city’s successes and shortcomings. While Houston has succeeded in becoming a diverse, international city, we have sacrificed the very ecology that once made up one of the country’s most productive agricultural areas. By 1980, Houston possessed the least amount of green space per person in the country.

As new developments popped up across the city, it became difficult to convince developers to pursue third-party certifications such as LEED, a globally recognized symbol of sustainability that provides the framework for designing healthy, efficient, carbon saving buildings. We can credit Hines with being one of the few developers in Houston to prioritize green design during the early-2000s. City leaders also began advocating for resilient strategies and more green space to attract and retain international talent and businesses. In recent years, we have seen an increase in buildings that are achieving LEED certification, and soon it will become the baseline.

The Houston Advanced Research Center, Photography by Shau Lin Hon, Slyworks Photography

An example of a project leading the way for resilient design is The Houston Advanced Research Center (HARC). In 2017 the organization completed work on its LEED Platinum Certified headquarters which was designed to meet the ENERGY STAR certification rate of 99 (out of 100). This means that the building is more efficient than 99 percent of all office buildings in the United States. Skanska is another construction and development company bringing a sustainable mindset to downtown Houston with its work on Bank of America Tower. In 2019, the 775,000 square foot building became the largest LEED v4 Platinum Core and Shell certified project in the world to date and was developed with harvesting technology that will significantly reduce energy usage.

It’s also important to understand the impact that the climate crisis is having on people. 91 percent of U.S. Gen Z/Millennials have been affected by extreme weather events since 2019, the most of any generation. These experiences have resulted in two generations preparing to react and combat climate change and has encouraged a spirit of transparency among companies who choose to share their environmental goals and strategies.

For architects and designers, addressing building and energy codes is proving to be the next big design consideration. As codes progress in the coming years, the result will be more unique and unexpected building designs.

When reimagining the use of buildings, Architects Paulina Abella and Tayler Trojcak propose an experimental process for repurposing vacant buildings called High Hackers. The concept provides an opportunity for developers to offer prime downtown real estate to people with diverse skill sets, whom they call “hackers,” to pursue projects shaped by their individual ideas. These hackers—makers, artists, and academics—will work alongside one another in spaces that encourage them to coexist with creatives from other fields and disciplines. More importantly, it fosters a collaborative, organic, and innovative workflow.

When examining how you can better prepare and respond to ongoing climate-related challenges, we encourage prioritizing marginalized communities that are already experiencing most of the negative impacts. Promoting awareness and optimism in our communities is another simple yet effective way to make a difference. For businesses, creating a sense of continuity in the face of climate events, investing in energy and resource efficiency and adaptation, and addressing insurability and the long-term value of real estate will ultimately help lead Houston and its community members toward a place of preparedness and resiliency.

------

Rives Taylor directs Gensler’s Global Design Resilience teams and initiatives and has been a faculty member of both Rice University and the University of Houston for 30 years. Maria Perez is a design resilience leader for Gensler’s South Central region and director of sustainable design based in Gensler’s Houston office.

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Greentown and partners name 10 startups to carbontech accelerator

new cohort

The Carbon to Value Initiative (C2V Initiative)—a collaboration between Greentown Labs, NYU Tandon School of Engineering's Urban Future Lab and Fraunhofer USA—has announced 10 startup participants to join the fifth cohort of its carbontech accelerator.

The six-month accelerator aims to help cleantech startups advance their commercialization efforts through access to the C2V Initiative’s Carbontech Leadership Council (CLC). The invitation-only council consists of corporate and nonprofit leaders from organizations like Shell, TotalEnergies, XPRIZE, L’Oréal and others who “foster commercialization opportunities and identify avenues for technology validation, testing, and demonstration,” according to a release from Greentown

“The No. 1 reason startups engage with Greentown is to find customers, grow their businesses, and accelerate impact—and the Carbon to Value Initiative delivers exactly that,” Georgina Campbell Flatter, CEO of Greentown, said in a news release. “It’s a powerful example of how meaningful engagement between entrepreneurs and industry turns innovation into commercial traction.”

The C2V Initiative received more than 100 applications from 33 countries, representing a variety of carbontech innovations. The 10 startups chosen for the 2025 fifth cohort include:

  • Cambridge, Massachusetts-based Sora Fuel, which integrates direct-air capture with direct conversion of the captured carbon into syngas for production of sustainable aviation fuel
  • Brooklyn-based Arbon, which develops a humidity-swing carbon-capture solution by capturing CO₂ from the air or point-source without heat or pressure
  • New York-based Cella Mineral Storage, which works to develop subsurface mineralization technology with integrated software, enabling new ways to sequester CO2 underground
  • Germany-based ICODOS, which helps transform emissions into value through a point-source carbon capture and methanol synthesis process in a single, modularized system
  • Vancouver-based Lite-1, which uses advanced biomanufacturing processes to produce circular colourants for use in textiles, cosmetics and food
  • London-based Mission Zero Technologies, which has developed and deployed an electrified, direct-air carbon capture solution that employs both liquid-adsorption and electrochemical technologies
  • Kenya-based Octavia Carbon, which develops a solid-adsorption-based, direct-air carbon capture solution that utilizes geothermal heat
  • California-based Rushnu, which combines point-source carbon capture with chemical production, turning salt and CO2 into chlorine-based chemicals and minerals
  • Brooklyn-based Turnover Labs, which develops modular electrolyzers that transform raw, industrial CO2 emissions into chemical building blocks, without capture or purification
  • Ontario-based Universal Matter, which develops a Flash Joule Heating process that converts carbon waste such as end-of-life plastics, tires or industrial waste into graphene

The C2V Initiative is based on Greentown Go, Greentown’s open-innovation program. The C2V Initiative has supported 35 startups that have raised over $600 million in follow-on funding.

Read about the 2024 cohort here.

CenterPoint gets go-ahead for $2.9B upgrade of Houston grid

grid resiliency

Texas utility regulators have given the green light for Houston-based CenterPoint Energy to spend $2.9 billion on strengthening its Houston-area electric grid to better withstand extreme weather.

The cost of the plan is nearly $3 billion below what CenterPoint initially proposed to the Public Utility Commission of Texas.

In early 2025, CenterPoint unveiled a $5.75 billion plan to upgrade its Houston-area power system from 2026 through 2028. But the price tag dropped to $2.9 billion as part of a legal settlement between CenterPoint and cities in the utility’s service area.

Sometime after the first quarter of next year, CenterPoint customers in the Houston area will pay an extra $1 a month for the next three years to cover costs of the resiliency plan. CenterPoint serves 2.9 million customers in a 12-county territory anchored by Houston.

CenterPoint says the plan is part of its “commitment to building the most resilient coastal grid in the country.”

A key to improving CenterPoint’s local grid will be stepping up management of high-risk vegetation (namely trees), which ranks as the leading cause of power outages in the Houston area. CenterPoint says it will “go above and beyond standard vegetation management by implementing an industry-leading three-year trim cycle,” clearing vegetation from thousands of miles of power lines.

The utility company says its plan aims to prevent Houston-area power outages in case of hurricanes, floods, extreme temperatures, tornadoes, wildfires, winter storms, and other extreme weather events.

CenterPoint says the plan will:

  • Improve systemwide resilience by 30 percent
  • Expand the grid’s power-generating capacity. The company expects power demand in the Houston area to grow 2 percent per year for the foreseeable future.
  • Save about $50 million per year on storm cleanup costs
  • Avoid outages for more than 500,000 customers in the event of a disaster like last year’s Hurricane Beryl
  • Provide 130,000 stronger, more storm-resilient utility poles
  • Put more than 50 percent of the power system underground
  • Rebuild or upgrade more than 2,200 transmission towers
  • Modernize 34,500 spans of underground cables

In the Energy Capital of the World, residents “expect and deserve an electric system that is safe, reliable, cost-effective, and resilient when they need it most. We’re determined to deliver just that,” Jason Wells, president and CEO of CenterPoint, said in January.

Solidec partners with Australian company for clean hydrogen peroxide pilot​

rare earth pilot

Solidec has partnered with Australia-based Lynas Rare Earth, an environmentally responsible producer of rare earth oxides and materials, to reduce emissions from hydrogen peroxide production.

The partnership marks a milestone for the Houston-based clean chemical manufacturing startup, as it would allow the company to accelerate the commercialization of its hydrogen peroxide generation technology, according to a news release.

"This collaboration is a major milestone for Solidec and a catalyst for sustainability in rare earths," Yang Xia, co-founder and CTO of Solidec, said in the release. "Solidec's technology can reduce the carbon footprint of hydrogen peroxide production by up to 90%. By combining our generators with the scale of a global leader in rare earths, we can contribute to a more secure, sustainable supply of critical minerals."

Through the partnership, Solidec will launch a pilot program of its autonomous, on-site generators at Lynas's facility in Australia. Solidec's generators extract molecules from water and air and convert them into carbon emission-free chemicals and fuels, like hydrogen peroxide. The generators also eliminate the need for transport, storage and permitting, making for a simpler, more efficient process for producing hydrogen peroxide than the traditional anthraquinone process.

"Hydrogen peroxide is essential to rare earth production, yet centralized manufacturing adds cost and complexity," Ryan DuChanois, co-founder and CEO of Solidec, added in the release. "By generating peroxide directly on-site, we're reinventing the chemical supply chain for efficiency, resilience, and sustainability."

The companies report that the pilot is expected to generate 10 tons of hydrogen peroxide per year.

If successful, the pilot would serve as a model for large-scale deployments of Solidec's generators across Lynas' operations—and would have major implications for the high-performance magnet, electric vehicles, wind turbine, and advanced electronics industries, which rely on rare earth elements.

"This partnership with Solidec is another milestone on the path to achieving our Towards 2030 vision," Luke Darbyshire, general manager of R&I at Lynas, added. "Working with Solidec allows us to establish transformative chemical supply pathways that align with our innovation efforts, while contributing to our broader vision for secure, sustainable rare earth supply chains."