The politicians point to a recent Texas merger. Photo via Getty Images

Senate Majority Leader Chuck Schumer and 22 other Democratic senators are calling on the Department of Justice to “use every tool” at its disposal to prevent and prosecute alleged collusion and price-fixing in the oil industry.

In a letter Thursday to Attorney General Merrick Garland and other officials, the Democrats said a recent Federal Trade Commission investigation into a high-profile merger uncovered evidence of price-fixing by oil executives that led to higher energy costs for American families and businesses.

The FTC said earlier this month that Scott Sheffield, the former CEO of Texas-based Pioneer Natural Resources, colluded with OPEC and OPEC+ to potentially raise crude oil prices. Sheffield retired from the company in 2016 but returned as CEO in 2019. After retiring again in 2023, he continued to serve on its board.

The FTC cleared Houston-based ExxonMobil's $60 billion deal to buy Pioneer on May 2 but barred Sheffield from joining the new company’s board of directors. Pioneer, which is based in Dallas, said it disagreed with the allegations but would not impede closing of the merger, which was announced in 2023.

In a report, the FTC said collusion by Pioneer and others may have cost the average American household up to $500 per car in increased annual fuel costs, an amount Democrats called “an unwelcome tax that is particularly burdensome for lower-income families.'' Meanwhile, Exxon Mobil and other major oil companies collectively earned more than $300 billion in profits over the last two years, "a surge that many market experts believe cannot be explained away by increased production costs from the (coronavirus) pandemic or inflation,” Democrats said.

The letter calls for the Justice Department to launch an industry-wide investigation into possible violations of the Sherman Antitrust Act. It outlined how “Big Oil’s alleged collusion with OPEC is a national security concern that aids countries looking to undermine the U.S.," including Russia and Iran.

“Corporate malfeasance must be confronted, or it will proliferate," the letter said. “These alleged offenses do not simply enrich corporations; hardworking Americans end up paying the price through higher costs for gas, fuel and related consumer products. The DOJ must protect consumers, small businesses and the public from petroleum-market collusion."

The letter by Senate Democrats was the latest in a series of partisan actions targeting the oil industry.

Separately, Democratic Sen. Sheldon Whitehouse of Rhode Island and Democratic Rep. Jamie Raskin of Maryland have formally asked the Justice Department to investigate whether Exxon, Chevron and other oil companies misled the public over decades about the climate effects of burning fossil fuels. Whitehouse and Raskin led a multiyear investigation that uncovered what they described as “damning new documents that exposed the fossil fuel industry’s ongoing efforts to deceive the public and block climate action.”

Republicans, meanwhile, have attacked President Joe Biden's energy policies, including a freeze on liquefied natural gas exports, restrictions on new oil and gas leasing on a petroleum reserve in Alaska and a decision to charge companies higher rates to drill for oil and natural gas on federal lands.

Sen. John Barrasso, the top Republican on the Senate Energy Committee, said the Democratic president was “doing all he can to make it economically impossible to produce energy on federal lands.''

The letter released Thursday was signed by 23 Democrats, including Schumer, Whitehouse, Senate Commerce Committee Chairwoman Maria Cantwell of Washington state and Senate Judiciary Committee Chairman Dick Durbin of Illinois.

The lizard already is “functionally extinct” across 47 percent of its range. Photo via Getty Images

New endangered listing for rare lizard could slow oil and gas drilling in Texas, New Mexico

to save the species

Federal wildlife officials declared a rare lizard in southeastern New Mexico and West Texas an endangered species Friday, citing future energy development, sand mining and climate change as the biggest threats to its survival in one of the world’s most lucrative oil and natural gas basins.

“We have determined that the dunes sagebrush lizard is in danger of extinction throughout all of its range,” the U.S. Fish and Wildlife Service said. It concluded that the lizard already is “functionally extinct” across 47 percent of its range.

Much of the the 2.5-inch-long (6.5-centimeter), spiny, light brown lizard's remaining habitat has been fragmented, preventing the species from finding mates beyond those already living close by, according to biologists.

“Even if there were no further expansion of the oil and gas or sand mining industry, the existing footprint of these operations will continue to negatively affect the dunes sagebrush lizard into the future,” the service said in its final determination, published in the Federal Register.

The decision caps two decades of legal and regulatory skirmishes between the U.S. government, conservationists and the oil and gas industry. Environmentalists cheered the move, while industry leaders condemned it as a threat to future production of the fossil fuels.

The decision provides a “lifeline for survival” for a unique species whose “only fault has been occupying a habitat that the fossil fuel industry has been wanting to claw away from it,” said Bryan Bird, the Southwest director for Defenders of Wildlife.

“The dunes sagebrush lizard spent far too long languishing in a Pandora’s box of political and administrative back and forth even as its population was in free-fall towards extinction,” Bird said in a statement.

The Permian Basin Petroleum Association and the New Mexico Oil & Gas Association expressed disappointment, saying the determination flies in the face of available science and ignores longstanding state-sponsored conservation efforts across hundreds of thousands of acres and commitment of millions of dollars in both states.

“This listing will bring no additional benefit for the species and its habitat, yet could be detrimental to those living and working in the region,” PBPA President Ben Shepperd and NMOGA President and CEO Missi Currier said in a joint statement, adding that they view it as a federal overreach that can harm communities.

Scientists say the lizards are found only in the Permian Basin, the second-smallest range of any North American lizard. The reptiles live in sand dunes and among shinnery oak, where they feed on insects and spiders and burrow into the sand for protection from extreme temperatures.

Environmentalists first petitioned for the species' protection in 2002, and in 2010 federal officials found that it was warranted. That prompted an outcry from some members of Congress and communities that rely on oil and gas development for jobs and tax revenue.

Several Republican lawmakers sent a letter to officials in the Obama administration asking to delay a final decision, and in 2012, federal officials decided against listing the dunes sagebrush lizard.

Then-U.S. Interior Secretary Ken Salazar said at the time that the decision was based on the “best available science” and because of voluntary conservation agreements in place in New Mexico and Texas.

The Fish and Wildlife Service said in Friday's decision that such agreements “have provided, and continue to provide, many conservation benefits” for the lizard, but “based on the information we reviewed in our assessment, we conclude that the risk of extinction for the dunes sagebrush lizard is high despite these efforts.”

Among other things, the network of roads will continue to restrict movement and facilitate direct mortality of dunes sagebrush lizards from traffic, it added, while industrial development “will continue to have edge effects on surrounding habitat and weaken the structure of the sand dune formations.”

The world can't keep on with what it's doing and expect to reach its goals when it comes to climate change. Radical innovations are needed at this point, writes Scott Nyquist. Photo via Getty Images

Only radical innovation can get the world to its climate goals, says this Houston expert

guest column

Almost 3 years ago, McKinsey published a report arguing that limiting global temperature rises to 1.5 degrees Celsius above pre-industrial levels was “technically achievable,” but that the “math is daunting.” Indeed, when the 1.5°C figure was agreed to at the 2015 Paris climate conference, the assumption was that emissions would peak before 2025, and then fall 43 percent by 2030.

Given that 2022 saw the highest emissions ever—36.8 gigatons—the math is now more daunting still: cuts would need to be greater, and faster, than envisioned in Paris. Perhaps that is why the Intergovernmental Panel on Climate Change (IPCC) noted March 20 (with “high confidence”) that it was “likely that warming will exceed 1.5°C during the 21st century.”

I agree with that gloomy assessment. Given the rate of progress so far, 1.5°C looks all but impossible. That puts me in the company of people like Bill Gates; the Economist; the Australian Academy of Science, and apparently many IPCC scientists. McKinsey has estimated that even if all countries deliver on their net zero commitments, temperatures will likely be 1.7°C higher in 2100.

In October, the UN Environment Program argued that there was “no credible pathway to 1.5°C in place” and called for “an urgent system-wide transformation” to change the trajectory. Among the changes it considers necessary: carbon taxes, land use reform, dietary changes in which individuals “consume food for environmental sustainability and carbon reduction,” investment of $4 trillion to $6 trillion a year; applying current technology to all new buildings; no new fossil fuel infrastructure. And so on.

Let’s assume that the UNEP is right. What are the chances of all this happening in the next few years? Or, indeed, any of it? President Obama’s former science adviser, Daniel Schrag, put it this way: “ Who believes that we can halve global emissions by 2030?... It’s so far from reality that it’s kind of absurd.”

Having a goal is useful, concentrating minds and organizing effort. And I think that has been the case with 1.5°C, or recent commitments to get to net zero. Targets create a sense of urgency that has led to real progress on decarbonization.

The 2020 McKinsey report set out how to get on the 1.5°C pathway, and was careful to note that this was not a description of probability or reality but “a picture of a world that could be.” Three years later, that “world that could be” looks even more remote.

Consider the United States, the world’s second-largest emitter. In 2021, 79 percent of primary energy demand (see chart) was met by fossil fuels, about the same as a decade before. Globally, the figures are similar, with renewables accounting for just 12.5 percent of consumption and low-emissions nuclear another 4 percent. Those numbers would have to basically reverse in the next decade or so to get on track. I don’t see how that can happen.

No alt text provided for this image

Credit: Energy Information Administration

But even if 1.5°C is improbable in the short term, that doesn’t mean that missing the target won’t have consequences. And it certainly doesn’t mean giving up on addressing climate change. And in fact, there are some positive trends. Many companies are developing comprehensive plans for achieving net-zero emissions and are making those plans part of their long-term strategy. Moreover, while global emissions grew 0.9 percent in 2022, that was much less than GDP growth (3.2 percent). It’s worth noting, too, that much of the increase came from switching from gas to coal in response to the Russian invasion of Ukraine; that is the kind of supply shock that can be reversed. The point is that growth and emissions no longer move in lockstep; rather the opposite. That is critical because poorer countries are never going to take serious climate action if they believe it threatens their future prosperity.

Another implication is that limiting emissions means addressing the use of fossil fuels. As noted, even with the substantial rise in the use of renewables, coal, gas, and oil are still the core of the global energy system. They cannot be wished away. Perhaps it is time to think differently—that is, making fossil fuels more emissions efficient, by using carbon capture or other technologies; cutting methane emissions; and electrifying oil and gas operations. This is not popular among many climate advocates, who would prefer to see fossil fuels “stay in the ground.” That just isn’t happening. The much likelier scenario is that they are gradually displaced. McKinsey projects peak oil demand later this decade, for example, and for gas, maybe sometime in the late 2030s. Even after the peak, though, oil and gas will still be important for decades.

Second, in the longer term, it may be possible to get back onto 1.5°C if, in addition to reducing emissions, we actually remove them from the atmosphere, in the form of “negative emissions,” such as direct air capture and bioenergy with carbon capture and storage in power and heavy industry. The IPCC itself assumed negative emissions would play a major role in reaching the 1.5°C target; in fact, because of cost and deployment problems, it’s been tiny.

Finally, as I have argued before, it’s hard to see how we limit warming even to 2°C without more nuclear power, which can provide low-emissions energy 24/7, and is the largest single source of such power right now.

None of these things is particularly popular; none get the publicity of things like a cool new electric truck or an offshore wind farm (of which two are operating now in the United States, generating enough power for about 20,000 homes; another 40 are in development). And we cannot assume fast development of offshore wind. NIMBY concerns have already derailed some high-profile projects, and are also emerging in regard to land-based wind farms.

Carbon capture, negative emissions, and nuclear will have to face NIMBY, too. But they all have the potential to move the needle on emissions. Think of the potential if fast-growing India and China, for example, were to develop an assembly line of small nuclear reactors. Of course, the economics have to make sense—something that is true for all climate-change technologies.

And as the UN points out, there needs to be progress on other issues, such as food, buildings, and finance. I don’t think we can assume that such progress will happen on a massive scale in the next few years; the actual record since Paris demonstrates the opposite. That is troubling: the IPCC notes that the risks of abrupt and damaging impacts, such as flooding and crop yields, rise “with every increment of global warming.” But it is the reality.

There is one way to get us to 1.5°C, although not in the Paris timeframe: a radical acceleration of innovation. The approaches being scaled now, such as wind, solar, and batteries, are the same ideas that were being discussed 30 years ago. We are benefiting from long-term, incremental improvements, not disruptive innovation. To move the ball down the field quickly, though, we need to complete a Hail Mary pass.

It’s a long shot. But we’re entering an era of accelerated innovation, driven by advanced computing, artificial intelligence, and machine learning that could narrow the odds. For example, could carbon nanotubes displace demand for high-emissions steel? Might it be possible to store carbon deep in the ocean? Could geo-engineering bend the curve?

I believe that, on the whole, the world is serious about climate change. I am certain that the energy transition is happening. But I don’t think we are anywhere near to being on track to hit the 1.5°C target. And I don’t see how doing more of the same will get us there.

------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn.

There's no silver bullet for clean energy. We need an all-hands-on-deck approach, writes Scott Nyquist. Photo via Getty Images

Houston expert: When it comes to the future of energy and climate, think 'all of the above'

guest column

People in the energy industry don’t have the Oscars. For us, the big event of the year is CERAWeek — a conference stuffed with CEOs, top policymakers, and environmental and energy wonks held annually in March.

CERAWeek 2022, with the theme“Pace of Change: Energy, Climate, and Innovation," meant the return of in-person activations, panels, and networking. Walking and talking between sessions and around the coffee table, it occurred to me that the unofficial theme of the event was “Maybe now we can find middle ground on energy.” This idea came up time and time again, from all kinds of people.

As with too many other issues, the discussion of the future of US energy has become polarized. On one end of the spectrum are those who want everything renewable and/or electrified by ….. last week, whatever the cost. Their mantra for fossil fuels: “Keep them in the ground.”

On the other end, are those who dismiss climate change, saying we can always adapt and that it doesn’t much matter, anyway. Just keep digging and drilling and mining as we have always done. And in the middle are the great majority of Americans who are not passionate either way, but want to be responsible consumers, and also to be able to visit grandma without breaking the bank.

I believe that the transition toward an energy system that is cleaner and less reliant on fossil fuels is realand will ultimately bring substantial benefits. At the same time, I believe that energy security and economics also matter. At a time when inflation was already running high, paying an average of $4.25 a gallon at the pump is piling pain on tens of millions of US households. Ultimately, over decades, the use of electric vehicles will reduce the need for oil and that lower-emissions sources, including renewables, will provide a larger share of the power supply, which today depends largely on gas and coal. But that moment is not now, or next week. Indeed, fossil fuels continue to account for almost 80 percent of US primary energy consumption, and a similar figure globally.

Here is one way to think about the interplay between the energy transition and energy security: “We need an energy strategy for the future—an all-of-the-above strategy for the 21st century that develops every source of American-made energy.” No, that isn’t some apologist for Big Oil; it was President Obama. In 2014, the Obama White House also noted the role of US domestic oil and gas production in enhancing economic resilience and reducing vulnerability to oil shocks. In short, the White House argued, US oil and gas production can bring real benefits for the country. I think that is still true.

Does that mean throwing in the towel on the energy transition and climate change? Absolutely not. There are a variety of ways to pursue the goal of reducing emissions and eventually getting to net-zero emissions. I’ve touched on many of them in previous posts—including reducing methane emissions,pricing carbon, hydrogen, renewables, electric vehicles, urban planning, carbon capture, and negative emissions technologies. In other words, an “all of the above strategy” makes sense in this regard, too.

I don’t know how, or if, a middle ground can be captured. But from what I heard at CERAWeek last year, from people of otherwise widely divergent views, there just may be momentum to get there. A middle-ground consensus rests on three premises. First, we need fossil fuels for energy security and reliability now and until the time when technologies are in place to secure the energy transition. Second, at the same time, we need to be investing in the energy transition because climate change is real and matters. And third, for sustained and systematic progress, government and industry need to work together.

Or, in a phrase, “all of the above.”

------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn.

Just what does 'energy transition' mean, anyway? Photo via Shutterstock

Defining ‘energy transition’ — and the semantics involved in it

Guest column

The term “energy transition” is fraught with misconceptions, but not just because of the varied interpretation of the term “transition.” The Energy101 series on EnergyCapitalHTX.com brings clarity to both terms with simple and direct information that anyone can understand. As explored in a previous conversation with ChatGPT, we are all part of the Energy Industry, so its high time we all understood it.

DEFINING TERMINOLOGY

Merriam-Webster defines transition as “a change or shift from one state, subject, place, etc. to another.” The popular interpretation of ‘energy transition’ implies a complete shift away from energy produced from fossil fuels to energy produced from renewable sources. This isn’t entirely accurate–let’s explore why.

“The challenge of our lifetime is addressing [the] dual challenge of meeting increased global energy demand while confronting global climate change” says Jane Stricker, executive director of the Houston Energy Transition Initiative and senior vice president, Greater Houston Partnership. This globally inclusive definition of ‘energy transition’ focuses on addressing objectives instead of proffering solutions–a common project management viewpoint through which opportunities are explored.

It's a simple, but effective, way to expand one’s line of thinking from acute problem solving to broader root-cause analysis. In other words, it is how we elevate from playing checkers to mastering chess.

DEFINING THE OPPORTUNITY

The United Nations tells us the world’s population reached 8 billion in late 2022, an increase of more than one billion people in just over a decade. During the same time frame, the number of people around the world without consistent access to electricity declined from approximately 1.2 billion to 775 million per the International Energy Agency (IEA) 2022 World Energy Outlook report. A commendable feat, no doubt, but the fact remains that about 10% of the world’s population still lives in energy poverty–and that number is increasing.

The first half of Stricker’s sentiment, the challenge of “meeting increased global energy demand” reflects these statistics, albeit almost poetically. To state the issue more plainly, one could ask, “how do we get more energy to more people?” Taking it one step further, we can split that inquiry into two basic questions: (1) how to get more energy, and (2) how to reach more people. This is where it gets interesting.

As explored in the inaugural Energy 101 article, energy is converted into usable form through one of three reactions. Mechanical and nuclear reactions that create electricity for immediate consumption are often deemed “cleaner” than those produced by chemical reaction, but the challenges of delivering more energy consistently and reaching more people are left shortchanged due to intermittent production and limited distribution mechanisms.

In recent history, this has left us to rely upon energy produced by chemical reactions from fossil fuels and/or batteries. Batteries have inherently been the more expensive option, mostly because of the limited supply of minerals necessary to effectively store and transport energy for later use in these contained systems. Hence, the heavy reliance on cheap fossil fuels.

REFINED CONSTRAINTS DEMAND NEW SOLUTIONS

With price as the determining factor influencing the modern world’s energy supply, oil and natural gas have scrambled to compete with coal, which is affordable and easily transportable. However, coal has one major drawback–using it accounts for approximately 20% of carbon emissions, more than oil and gas industrial use, combined, per calculations from the U.S. Energy Information Agency.

We have a duty to get more energy to more people, “while confronting global climate change,” as Stricker states. In the context of energy poverty, where more consistent access to more electricity needs to reach more people, energy needs not only be abundant, reliable, affordable, and accessible, but also, less toxic.

So far, we have yet to find a solution that meets all these conditions, so we have made trade-offs. The ‘energy transition’ merely reflects the energy industry’s latest acceptance of the next hurdle to enhance our lives on earth. As depicted by the image from the IEA below, it most certainly reflects a reduction in the reliance on coal for electricity production, but how that energy reduction will be off set remains yet to be determined.

It's an opportunity ripe for exploration while existing sources push to meet the expanding definition of sustainable energy–a shift in evaluation criteria, some might say. Perhaps even a transition.

Stacked chart showing demand of natural gas, coal, and oil from 1900 to 2050 (estimated)Demand for natural gas and oil are expected to level out, as demand for coal shrinks to meet goals for lower carbon emissions. Photo courtesy of IEA, license CC by 4.0Demand for natural gas and oil are expected to level out, as demand for coal shrinks to meet goals for lower carbon emissions. Photo courtesy of IEA, license CC by 4.0


------

Lindsey Ferrell is a contributing writer to EnergyCapitalHTX and founder of Guerrella & Co.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

New report maps Houston workforce development strategies as companies transition to cleaner energy

to-do list

The University of Houston’s Energy University latest study with UH’s Division of Energy and Innovation with stakeholders from the energy industry, academia have released findings from a collaborative white paper, titled "Workforce Development for the Future of Energy.”

UH Energy’s workforce analysis found that the greatest workforce gains occur with an “all-of-the-above” strategy to address the global shift towards low-carbon energy solutions. This would balance electrification and increased attention to renewables with liquid fuels, biomass, hydrogen, carbon capture, utilization and storage commonly known as CCUS, and carbon dioxide removal, according to a news release.

The authors of the paper believe this would support economic and employment growth, which would leverage workers from traditional energy sectors that may lose jobs during the transition.

The emerging hydrogen ecosystem is expected to create about 180,000 new jobs in the greater Houston area, which will offer an average annual income of approximately $75,000. Currently, 40 percent of Houston’s employment is tied to the energy sector.

“To sustain the Houston region’s growth, it’s important that we broaden workforce participation and opportunities,” Ramanan Krishnamoorti, vice president of energy and innovation at UH, says in a news release. “Ensuring workforce readiness for new energy jobs and making sure we include disadvantaged communities is crucial.”

Some of the key takeaways include strategies that include partnering for success, hands-on training programs, flexible education pathways, comprehensive support services, and early and ongoing outreach initiatives.

“The greater Houston area’s journey towards a low-carbon future is both a challenge and an opportunity,” Krishnamoorti continues. “The region’s ability to adapt and lead in this new era will depend on its commitment to collaboration, innovation, and inclusivity. By preparing its workforce, engaging its communities, and leveraging its industrial heritage, we can redefine our region and continue to thrive as a global energy leader.”

The study was backed by federal funding from the Department of the Treasury through the State of Texas under the Resources and Ecosystems Sustainability, Tourist Opportunities, and Revived Economies of the Gulf Coast States Act of 2012.

Houston geothermal startup selects Texas location for first energy storage facility

major milestone

Houston-based geothermal energy startup Sage Geosystems has teamed up with a utility provider for an energy storage facility in the San Antonio metro area.

The three-megawatt EarthStore facility will be on land controlled by the San Miguel Electric Cooperative, which produces electricity for customers in 47 South Texas counties. The facility will be located in the town of Christine, near the cooperative’s coal-fired power plant.

Sage says its energy storage system will be paired with solar energy to supply power for the grid operated by the Electric Reliability Council of Texas (ERCOT). The facility is set to open later this year.

“Once operational, our EarthStore facility in Christine will be the first geothermal energy storage system to store potential energy deep in the earth and supply electrons to a power grid,” Cindy Taff, CEO of Sage Geosystems, says in a news release.

The facility is being designed to store geothermal energy during six- to 10-hour periods.

“Long-duration energy storage is crucial for the ERCOT utility grid, especially with the increasing integration of intermittent wind and solar power generation,” says Craig Courter, CEO of the San Miguel Electric Cooperative.