Expro has secured a $10 million contract to provide a subsea well decommissioning solution, combining subsea safety systems and surface fluid management to support safe re-entry and fluid management for plugged and abandoned wells. Photo courtesy of Expro

Houston energy services provider Expro was awarded a contract valued at over $10 million for the provision of a well decommissioning solution.

The solution will combine subsea safety systems and surface processing design that can enable safe entry to the well and management of well fluids.

“The contract reinforces our reputation as the leading provider of subsea safety systems and surface well test equipment, including within the P&A sector,” Iain Farley, Expro’s regional vice president for Europe and Sub-Saharan Africa, says in a news release. "It demonstrates our commitment to delivering best-in-class equipment, allied with the highest standards of safety and service quality that Expro is renowned for.”

Expro will provide from its global support hub in Aberdeen, a surface fluid management package and a market-leading 7-3/8 inch large-bore subsea test tree assembly (SSTTA). This will include surface tree and controls that can provide dual barrier and disconnect capability to facilitate re-entry into the subsea wells.

Expro has been supplying its subsea safety systems and well test equipment to the construction of many of the 52 wells now being plugged and abandoned.

“Having been involved in the development phase for many of these fields, we have gained a life of well experience that will be invaluable for this P&A campaign,” Farley adds. “Our expertise and know-how will help deliver key technical and commercial benefits for the client across the project.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based co. closes acquisition of 50 percent stake in Texas cogeneration facility

M&A Moves

Fengate Asset Management announced the financial close on the acquisition of a 50 percent interest in Freeport Power Limited, which owns a 440-megawatt cogeneration facility in Freeport, Texas.

FPL is located near the Freeport Energy Center, which is a 260-megawatt cogeneration facility that is currently owned and managed by Fengate. The two facilities work to provide cost-effective power and steam to Dow’s Freeport site, which is the largest integrated chemical manufacturing complex in the Western Hemisphere.

“We are thrilled to have closed this acquisition, which aligns with our strategy of acquiring behind-the-meter cogeneration projects with strong industrial partners like Dow,” Greg Calhoun, managing director of Infrastructure Investments at Fengate, says in a news release.

Fengate was able to acquire interest in FPL under a strategic operating partnership with asset manager Ironclad Energy. The partnership with Ironclad was established in 2022 to acquire and operate cogeneration, district energy and other power generation projects throughout North America.

“This is our second acquisition with Fengate, and we look forward to continuing our partnership to optimize and expand the portfolio,” Christopher Fanella, president and CFO of Ironclad Energy, says in the release.

Fengate opened its first U.S. office in 2017 in Houston.

“Combined heat and power projects like FPL will continue to play an important role in the U.S. power industry – especially for hard-to-abate industrial sectors – to ensure reliability, efficiency and affordability,” adds in the release.

Houston energy leader on why the future of fuels is more than electric vehicles

guest column

Gasoline, diesel, bunker fuel, and jet fuel. Four liquid hydrocarbons that have been powering transportation for the last 100-plus years.

Gas stations, truck stops, ports, and airport fuel terminals have been built up over the last century to make transportation easy and reliable.

These conventional fuels release Greenhouse Gases (GHG) when they are used, and governments all over the world are working on plans to shift towards cleaner fuels in an effort to lower emissions and minimize the effects of climate change.

For passenger cars, it’s clear that electricity will be the cleaner fuel type, with most countries adopting electric vehicles (EVs), and in some cases, providing their citizens with incentives to make the switch.

While many articles have been written about EVs and the benefits that come along with them, they fail to look at the transportation system as a whole.

Trucks, cargo ships, and airplanes are modes of transportation that are used every day, but they don’t often get the spotlight like EVs do.

For governments to be effective in curbing transportation-related greenhouse emissions, they must consider all forms of transportation and cleaner fuel options for them as well.

43 percent of GHG emissions comes from these modes of transportation. Therefore, using electricity to reduce GHG emissions in light duty vehicles only accounts for part of the total transportation emissions equation.

The path to cleaner fuels for these transportation modes has its challenges.

According to Ed Emmett, Fellow in Energy and Transportation Policy at the Baker Institute Center for Energy Studies (CES);

  • "Airplanes cannot be realistically powered by electricity, at least not currently, and handle the same requisite freight and passenger loads"
  • "The long-haul trucking industry [...] pushed back against electrification as being impractical due to the size and weight of batteries, their limited range, and the cost of adoption"
  • "Shipowners have expressed reluctance to scrap existing bunker fueled ships for newer, more expensive ships, especially when other fueling options, e.g. biofuels and hydrocarbon derivatives-for fleets can be made available"

Finding low-cost, reliable, and environmentally sound fuels for the various segments of transportation is complex. As Emmett suggests in his latest article;

"Hovering over the transition to other fuels for almost every transportation mode is the question of dependability of supply. For the trucking industry, the truck stop industry must be able to adapt to new fuel requirements. For ocean shipping, ports must be able to meet the fuel needs of new ships. Airlines, air cargo carriers and airports need to be on the same page when it comes to aviation fuels. In other words, the adoption equation in transitions in transportation is not only a function of the availability and cost of the new technology but also a function of the cost of the full supply chain needed to support fuel production and delivery to the point of use. Going forward, the transportation industry is facing a dilemma: How are environmental concerns addressed while simultaneously maintaining operational efficiency and avoiding unnecessary upward cost shifts for moving goods and people? In answering that question, for the first time in history, modes of transportation may end up going in multiple different directions when it comes to the fuels each mode ultimately chooses."

This is why many forecasts predict that hydrocarbon demand will continue through 2050, despite ambitious aspirations of achieving net zero emissions by that year. The McKinsey "slow evolution" scenario has global liquid hydrocarbon demand in 2050 at 92mmb/d versus 103 mmb/d in 2023. With their "continued momentum" scenario, oil demand is 75 mmb/d. Proportionally, global oil demand related to GHG emissions from transportation would decline 11-27 percent. The global uptake of EVs is the primary driver of uncertainty around future oil demand. In all the McKinsey scenarios, the share of EVs in passenger cars sales is expected to be above 90 percent by 2050.

The Good News

Despite the relatively slow progress expected for reducing GHG emissions in the global transportation sector, there are solutions emerging that lower the carbon footprint tied to traditional petroleum-based fuels. Emmett highlights some of the methods under study, noting that "sustainable biofuels sourced from cooking oils, animal fats, and agriculture products, as well as hydrogen, methanol, ammonia, and various e-fuels are among the options being tested. Some ocean carriers are already ordering ships powered by liquified natural gas, bio-e-methanol, bio/e-methane, ammonia, and hydrogen. Airlines are already using sustainable aviation fuel as a supplement to basic aviation fuel. Railroads are testing hydrogen locomotives. The trucking industry is decarbonizing local delivery by using vehicles powered by electricity, compressed natural gas, and sustainable diesel. Long-haul trucking companies are considering sustainable diesel as a drop-in fuel for existing equipment, and fuel suppliers are researching new engines fueled by hydrogen and other alternative fuels."

Most of these options will require a combination of increased government incentives, along with advancements in technology and cost reductions.

McKinsey's "sustainable transformation" scenario, which considers potential shifts in government regulations as well as advancements in technology and cost, suggests there is moderate growth in alternative fuels alongside growth in EVs. Mckinsey projects;

  • EV demand could grow to over 90 percent of total passenger car sales by 2050
  • EVs to make up around 80 percent of commercial truck sales by 2050
  • In aviation, low carbon fuels such as biofuels, synfuels, hydrogen and electricity are projected to grow to 49 percent by 2050.

According to McKinsey, the combination of these alternatives along with demand changes in power and chemicals could reduce global oil demand to 60 mmb/d in 2050. The shift to cleaner fuels, for modes of transportation other than EVs, is underway but the progress and adoption will take decades to achieve according to McKinsey’s forecasts.

Looking more closely at EVs, the story may not be as dire globally as it seems to be in the West. While the U.S. appears to be losing momentum on electric vehicle adoption, China is roaring ahead. New electric car registrations in China reached 8.1 million in 2023, increasing by 35 percent relative to 2022. McKinsey’s forecasts have underestimated global EV sales in the past, with China surpassing their estimates, while the U.S. lags behind. It’s clear that China is the winner in EV adoption; could they also lead the way to adopt cleaner fuels for other modes of transport? That is something governments and the transportation industry will be watching in the years ahead.

Conclusion

While we are not on a trajectory to meet the aspirations to reduce global GHG emissions in the transportation sector, there are emerging solutions that could be adopted should governments around the world decide to put in place the incentives to get there. Moving forward, the future of transportation fuels will be shaped by a mix of innovation, government policies, and what consumers want. The focus will be on ensuring that the transportation sector remains reliable, secure, and economically robust, while also reducing GHG emissions. But, decarbonizing the transportation sector is much more than just EV's – it's a broader effort that will require continued global progress in each of the multiple transportation segments.

------------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn on October 9, 2024.

Who's who in Houston energy transition: Top 5 interviews of 2024

year in review

Editor's note: As the year comes to a close, EnergyCapital is looking back at the year's top stories in Houston energy transition. EnergyCapital launched specifically to cover the energy transition community — and that includes the people who power it. Throughout the year, we spoke to these individuals and some resonated more than others to readers. Be sure to click through to read the full interviews or stream the podcast episode.

David Pruner, executive director of the Texas Entrepreneurship Exchange for Energy (TEX-E)

David Pruner, executive director of TEX-E, joins the Houston Innovator Podcast. Photo via LinkedIn

David Pruner is laser focused on the future workforce for the energy industry as executive director of the Texas Entrepreneurship Exchange for Energy, known as TEX-E, a nonprofit housed out of Greentown Labs that was established to support energy transition innovation at Texas universities.

TEX-E launched in 2022 in collaboration with Greentown Labs, MIT’s Martin Trust Center for Entrepreneurship, and five university partners — Rice University, Texas A&M University, Prairie View A&M University, University of Houston, and The University of Texas at Austin.

Pruner was officially named to his role earlier this year, but he's been working behind the scenes for months now getting to know the organization and already expanding its opportunities from students across the state at the five institutions. Read more.


Barbara Burger, mentor and adviser

Houston energy leader Barbara Burger joins the Houston Innovators Podcast to discuss the energy transition's biggest challenges and her key takeaways from CERAWeek. Photo courtesy of CERAWeek

Last month, Barbara Burger participated in four panels at CERAWeek by S&P Global, and from her insider perspective, she had a few key takeaways from the event, which brought together energy leaders, tech startups, dignitaries, civil servants, and more.

In a recent podcast interview, Burger shared some of her key takeaways from the event — and how these trends are affecting the industry as a whole. Read through an excerpt or stream the full episode below. Read more.


Tyler Lancaster, partner at Energize Capital

Tyler Lancaster, a Chicago-based investor with Energize Capital, shares his investment thesis and why Houston-based Amperon caught his eye. Photo courtesy of Energize Capital

One of the biggest challenges to the energy transition is finding the funds to fuel it. Tyler Lancaster, partner at Energize Capital, is playing a role in that.

Energize Capital, based in Chicago, is focused on disruptive software technology key to decarbonization. One of the firm's portfolio companies is Amperon, which raised $20 million last fall.

In an interview with EnergyCapital, Lancaster shares what he's focused on and why Amperon caught Energize Capital's attention. Read more.

Teresa Thomas, vice chair and national sector leader for energy and chemicals at Deloitte

Teresa Thomas, newly named vice chair and national sector leader for energy and chemicals at Deloitte, shares her vision in an interview. Photo via LinkedIn

Deloitte is undergoing a leadership shift — and this evolution for the nearly 200-year-old company directly affects its Houston office and the energy transition line of business.

Earlier this month, Teresa Thomas was named vice chair and national sector leader for energy and chemicals at Deloitte. Based in Houston, she will also serve as an advisory partner and leader in Deloitte & Touche LLP's Risk & Financial Advisory energy and chemicals practice. She succeeds Amy Chronis, partner at Deloitte LLP, who will continue to serve within the energy and chemicals practice until her retirement in June 2024.

In an interview with EnergyCapital, Thomas shares a bit about what she plans on focusing as she takes on her new role. Read more.

Sarah Jewett, vice president of strategy at Fervo Energy

Sarah Jewett, vice president of strategy at Fervo Energy, shares how Fervo has been able to leverage proven oil and gas technologies, such as horizontal drilling, and more, to pave the way toward a low-carbon energy future. Photo via HETI

Houston-based Fervo Energy, the leader in enhanced geothermal technology, is accelerating decarbonization by bringing 24/7 carbon-free electricity to the grid.

Fervo’s mission is to leverage geoscience innovations to accelerate the world’s transition to sustainable energy. Fervo continues to demonstrate the commercial viability and scalability of enhanced geothermal energy, which uses breakthrough techniques to harness heat from the earth and generate continuous electricity.

Sarah Jewett, VP of Strategy at Fervo, shared more about how Fervo has been able to leverage proven oil and gas technologies, such as horizontal drilling, well stimulation, and fiber-optic sensing, to pave the way toward a low-carbon energy future. Read more.