Just what does 'energy transition' mean, anyway? Photo via Shutterstock

The term “energy transition” is fraught with misconceptions, but not just because of the varied interpretation of the term “transition.” The Energy101 series on EnergyCapitalHTX.com brings clarity to both terms with simple and direct information that anyone can understand. As explored in a previous conversation with ChatGPT, we are all part of the Energy Industry, so its high time we all understood it.

DEFINING TERMINOLOGY

Merriam-Webster defines transition as “a change or shift from one state, subject, place, etc. to another.” The popular interpretation of ‘energy transition’ implies a complete shift away from energy produced from fossil fuels to energy produced from renewable sources. This isn’t entirely accurate–let’s explore why.

“The challenge of our lifetime is addressing [the] dual challenge of meeting increased global energy demand while confronting global climate change” says Jane Stricker, executive director of the Houston Energy Transition Initiative and senior vice president, Greater Houston Partnership. This globally inclusive definition of ‘energy transition’ focuses on addressing objectives instead of proffering solutions–a common project management viewpoint through which opportunities are explored.

It's a simple, but effective, way to expand one’s line of thinking from acute problem solving to broader root-cause analysis. In other words, it is how we elevate from playing checkers to mastering chess.

DEFINING THE OPPORTUNITY

The United Nations tells us the world’s population reached 8 billion in late 2022, an increase of more than one billion people in just over a decade. During the same time frame, the number of people around the world without consistent access to electricity declined from approximately 1.2 billion to 775 million per the International Energy Agency (IEA) 2022 World Energy Outlook report. A commendable feat, no doubt, but the fact remains that about 10% of the world’s population still lives in energy poverty–and that number is increasing.

The first half of Stricker’s sentiment, the challenge of “meeting increased global energy demand” reflects these statistics, albeit almost poetically. To state the issue more plainly, one could ask, “how do we get more energy to more people?” Taking it one step further, we can split that inquiry into two basic questions: (1) how to get more energy, and (2) how to reach more people. This is where it gets interesting.

As explored in the inaugural Energy 101 article, energy is converted into usable form through one of three reactions. Mechanical and nuclear reactions that create electricity for immediate consumption are often deemed “cleaner” than those produced by chemical reaction, but the challenges of delivering more energy consistently and reaching more people are left shortchanged due to intermittent production and limited distribution mechanisms.

In recent history, this has left us to rely upon energy produced by chemical reactions from fossil fuels and/or batteries. Batteries have inherently been the more expensive option, mostly because of the limited supply of minerals necessary to effectively store and transport energy for later use in these contained systems. Hence, the heavy reliance on cheap fossil fuels.

REFINED CONSTRAINTS DEMAND NEW SOLUTIONS

With price as the determining factor influencing the modern world’s energy supply, oil and natural gas have scrambled to compete with coal, which is affordable and easily transportable. However, coal has one major drawback–using it accounts for approximately 20% of carbon emissions, more than oil and gas industrial use, combined, per calculations from the U.S. Energy Information Agency.

We have a duty to get more energy to more people, “while confronting global climate change,” as Stricker states. In the context of energy poverty, where more consistent access to more electricity needs to reach more people, energy needs not only be abundant, reliable, affordable, and accessible, but also, less toxic.

So far, we have yet to find a solution that meets all these conditions, so we have made trade-offs. The ‘energy transition’ merely reflects the energy industry’s latest acceptance of the next hurdle to enhance our lives on earth. As depicted by the image from the IEA below, it most certainly reflects a reduction in the reliance on coal for electricity production, but how that energy reduction will be off set remains yet to be determined.

It's an opportunity ripe for exploration while existing sources push to meet the expanding definition of sustainable energy–a shift in evaluation criteria, some might say. Perhaps even a transition.

Stacked chart showing demand of natural gas, coal, and oil from 1900 to 2050 (estimated)Demand for natural gas and oil are expected to level out, as demand for coal shrinks to meet goals for lower carbon emissions. Photo courtesy of IEA, license CC by 4.0Demand for natural gas and oil are expected to level out, as demand for coal shrinks to meet goals for lower carbon emissions. Photo courtesy of IEA, license CC by 4.0


------

Lindsey Ferrell is a contributing writer to EnergyCapitalHTX and founder of Guerrella & Co.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Energy startup Base Power raises $1 billion series C round

fresh funding

Austin-based startup Base Power, which offers battery-supported energy in the Houston area and other regions, has raised $1 billion in series C funding—making it one of the largest venture capital deals this year in the U.S.

VC firm Addition led the $1 billion round. All of Base Power’s existing major investors also participated, including Trust Ventures, Valor Equity Partners, Thrive Capital, Lightspeed Venture Partners, Andreessen Horowitz (a16z), Altimeter, StepStone Group, 137 Ventures, Terrain, Waybury Capital, and entrepreneur Elad Gil. New investors include Ribbit Capital, Google-backed CapitalG, Spark Capital, Bond, Lowercarbon Capital, Avenir Growth Capital, Glade Brook Capital Partners, Positive Sum and 1789 Capital Management.

Coupled with the new $1 billion round, Base Power has hauled in more than $1.27 billion in funding since it was founded in 2023.

Base Power supplies power to homeowners and the electric grid through a distributed storage network.

“The chance to reinvent our power system comes once in a generation,” Zach Dell, co-founder and CEO of Base Power, said in a news release. “The challenge ahead requires the best engineers and operators to solve it, and we’re scaling the team to make our abundant energy future a reality.”

Zach Dell is the son of Austin billionaire and Houston native Michael Dell, chairman and CEO of Round Rock-based Dell Technologies.

In less than two years, Base Power has developed more than 100 megawatt-hours of battery-enabled storage capacity. One megawatt-hour represents one hour of energy use at a rate of one million watts.

Base Power recently expanded its service to the city of Houston. It already was delivering energy to several other communities in the Houston area. To serve the Houston region, the startup has opened an office in Katy.

The startup also serves the Dallas-Fort Worth and Austin markets. At some point, Base Power plans to launch a nationwide expansion.

To meet current and future demand, Base Power is building its first energy storage and power electronics factory at the former downtown Austin site of the Austin American-Statesman’s printing presses.

“We’re building domestic manufacturing capacity for fixing the grid,” Justin Lopas, co-founder and chief operating officer of Base Power, added in the release. “The only way to add capacity to the grid is [by] physically deploying hardware, and we need to make that here in the U.S. ... This factory in Austin is our first, and we’re already planning for our second.”

ExxonMobil postpones $10B plastics manufacturing plant

plastics project postponed

Spring-based ExxonMobil is postponing development of a $10 billion plastics manufacturing plant along the Gulf Coast. Construction on the plant, to be located near Port Lavaca, was supposed to begin next year.

“Based on current market conditions, we are going to slow the pace of our development for the Coastal Plain Venture,” ExxonMobil confirmed in an emailed statement. “We’re confident in our growth strategy, and we remain interested in a potential project along the U.S. Gulf Coast and in other regions around the world. We’re maintaining good relationships with community leaders and contractors, so we are ready to reevaluate the project’s status when market conditions improve.”

According to Independent Commodity Intelligence Services, the Coastal Plain project was preliminary, and ExxonMobil had not yet announced its decision about building a plant for polyethylene production. Polyethylene, the world’s most common plastic, is used in a variety of products, such as bags, bottles, food containers, automotive components, medical tubes, IV bags, children’s toys and cutting boards.

The Coastal Plain postponement follows a judge’s ruling in August that invalidated a decision by Calhoun County ISD board members to negotiate tax breaks with ExxonMobil, according to Inside Climate News. The judge made the ruling in a case filed by environmental activist Diane Wilson and her nonprofit group, San Antonio Bay Estuarine Waterkeeper.

Wilson told Inside Climate News that she thought public opposition played a part in ExxonMobil postponing the Coastal Plain project.

“I think if everybody had just rolled over for them, if they got exactly what they wanted (tax breaks) and there wasn’t a big fight, there would be no delay,” Wilson said.

KBR shifts sustainability focus with planned spinoff

seeing green

Houston-based KBR, a provider of technology and engineering services for government and private-sector customers, is pursuing a tax-free spinoff of its Mission Technology Solutions business as a public company. Following the spinoff, KBR would remain a public company.

The new company, nicknamed SpinCo, would focus on technology and engineering services for the space and national security sectors. The scaled-down KBR, nicknamed RemainCo, would concentrate solely on sustainability technology and services designed to reduce carbon emissions and support energy transition efforts.

According to the company, RemainCo, or New KBR, will is positioned to serve the ammonia and syngas, chemical and petrochemicals, clean refining, and circular economy markets.

Stuart Bradie, chairman, president and CEO of KBR, said that from July 2024 to July 2025, the Mission Technology Solutions segment generated revenue of $5.8 billion. During the same period, the Sustainability Technology Solutions segment posted revenue of $3.7 billion.

KBR has forecast fiscal year 2025 revenue of $8.1 billion, up from $7.7 billion during the previous fiscal year. The company’s 2026 fiscal year starts in January.

In a news release, KBR said SpinCo and the restructured KBR would “deliver long-term profitable growth and value for customers, associates, and shareholders.”

“Our team has successfully built two leading businesses with the necessary scale and strong financial profile to enable us to take this next exciting step,” Bradie told Wall Street analysts.

Over the past decade, Bradie said, KBR has evolved into “a leading provider of differentiated, innovative, up-market science, technology, and engineering solutions with global scale, global reach, and global impact.” The spinoff would create two public companies that’ll “unlock the next phase of value creation,” he added.

Bradie will be chairman, president, and CEO of the newly configured KBR, while Mark Sopp, KBR’s executive vice president and chief financial officer, will transition to oversight of the Mission Technology Solutions spinoff. Effective Jan. 5, Shad Evans will succeed Sopp as CFO of KBR. He currently is KBR’s senior vice president of financial operations.

Bradie said an executive search firm has been hired to identify candidates for the CEO and CFO roles at SpinCo.

The spinoff is expected to be completed in mid- to late 2026.