U.S. Secretary of Energy Jennifer M. Granholm made two big announcements at her CERAWeek address. Photo via Jennifer Granholm/X

The Department of Energy announced two major initiatives at U.S. Secretary of Energy Jennifer M. Granholm's address earlier this week at CERAWeek by S&P Global.

The first announcement Granholm revealed on Monday, March 18, at her keynote address was the DOE's latest Pathways to Commercial Liftoff report, which are initiatives established to provide investors with information of how specific energy technologies commercialize and what challenges they each have to overcome as they scale.

"We develop these Liftoff Reports through a combination of modeling and hundreds and hundreds of interviews with people across the whole investment lifecycle—from early-stage capital to commercial banks and institutional investors," Granholm says in her address.

The DOE has released eight already, and the ninth — and Granholm's favorite, she says — is on geothermal energy.

"Geothermal has such enormous potential. If we can capture the 'heat beneath our feet,' it can be the clean, reliable, base-load scalable power for everybody from industries to households," she says.

Geothermal development requires similar skills and infrastructure to traditional oil and gas, meaning the transition should be smooth, she explains, adding that the market is huge for geothermal.

"At scale, this market is significant: We're talking about at least—at least—a $250 billion investment opportunity to meet the goal that we have of 90 gigawatts of capacity by 2050," she remarks.

Granholm's address shifted into acknowledging the negative impact on communities the energy industry's history is paved with. She emphasizes how each of the Biden Administration's laws passed — like the Inflation Reduction Act and the Bipartisan Infrastructure Law — implemented requirements and incentives with communities in mind.

The administration's next initiative, and Granholm's second big announcement, is "to empower communities to build their energy future."

Regional Energy Democracy Initiative, or REDI, as Granholm describes, will "bring together companies, and community groups, and academic institutions, and philanthropy to weave equity and justice into DOE-funded clean energy projects."

The inaugural pilot will be in the Gulf South across Texas and Louisiana. She says the DOE plans to award over $8 billion to regional carbon reduction and clean energy infrastructure projects.

"These structures will provide capacity building, technical assistance to help communities match their most pressing needs with the biggest opportunities…to design and to implement Community Benefits Plans," Granholm says, "in short, really to have a say in how the historic clean energy investments in their backyards are going to benefit their people."

Granholm also noted on the progress of the clean energy sector, including how clean energy investment is three times what it was in 2018 and that in 2024, wind and solar energy in the U.S. is expected to outpace coal generation for the first time.

All this progress, Granholm explains, in light of global events and global energy supply disruption

"But our work together really has to extend beyond crisis management," she says. "Because the sooner that we acknowledge this transition for what it is—an undeniable, inevitable, and necessary realignment of the world’s energy system—the sooner we can capitalize on this incredible opportunity."

Leaders across Houston shared their thoughts on the Future of Global Energy today. Image courtesy of HETI.

Energy leaders across Houston provide a global perspective​

IT TAKES A VILLAGE

Just over one month ago, a major Houston drilling executive challenged the energy industry to embrace partnering to attain the sustainability goals of the energy transition. The sentiment echoed across multiple sessions held throughout Houston and broadcast virtually at today’s Future of Global Energy Conference presented by Chevron.

Read on for key statements made by leaders across the city at Day 2 of this three-part event, hosted by the Greater Houston Partnership, Houston Energy Transition Initiative (HETI), and Center for Houston’s Future.

SESSION 1: COMMUNITY ENGAGEMENT AND EQUITY

“My work over the past 20 years… has allowed me to connect with communities that live in the shadows of large industrial facilities,” says John Hall, CEO of Houston Advanced Research Center (HARC).

“If energy companies, and the rest of the business sector, and government could come together… we have the opportunity, if we work innovatively and creatively to mesh all of those resources together, through a process of deliberate and thoughtful conversations, and engagement with some of the most disadvantaged communities in this state–we have the opportunity, without having to spend extra money, but through cooperative collaboration and solution building… not only achieve corporate goals, but uplift these communities.“

SESSION 2: BUILDING A WORKFORCE FOR THE TRANSITION

“We have to educate younger people that are coming into the workforce where the jobs are, and where the where the jobs are going to be in the next 10-15 years,” declares Tim Tarpley, president of the Energy Workforce & Technology Council. “We do not have enough young people coming into the energy space to [back]fill the folks that are retiring. And that’s a big problem.”

Tarpley continues, “Younger people don’t always feel like there’s going to be opportunities in this industry going forward. That couldn’t be further from the truth. There is tremendous opportunity.”

SESSION 3: INNOVATION & TECHNOLOGY FOR THE ENERGY TRANSITION

“Being able to take technology from lab development to commercialization, crossing that barrier of risk–we have to do that as an industry and as a society,” explains Billy Bardin, Global Climate Transition Director, Dow Inc.

“Houston has a leading role to play in that, given the deployed assets, the expertise, the workforce development plans we heard about in the previous session with our academic partners. This portfolio of capabilities is ultimately required. At Dow, we talk about a decarbonizing growth strategy – where we want to decarbonize our assets but at the same time make safer, more sustainable materials that our customers need.”

------

“Partnerships are critical with earlier stage startups, but also partnerships on deployment are critical. When thinking about scaling up, and the challenges of scaling up, it’s really hard to find one company that can do it all,” says Jim Gable, President, Chevron Technology Ventures. “Every solution has to fit within the rest of the system. It’s not just one breakthrough that’s going to resolve the world’s challenges related to decarbonization or lowering our carbon footprint.”

SESSION 4: FUNDING THE ENERGY TRANSITION

“One of the vexing issues is the demand side of the equation,” posits Kassia Yanosek, Partner, McKinsey & Company. “We are in a different world today, where we have to think, ‘How do we scale new molecules?’ Green LNG, hydrogen and ammonia made from green hydrogen or blue hydrogen–we don’t have a deep market for those types of molecules. The challenge we are facing today, in addition to the supports on the supply side, is creating a market and demand for these molecules that cost more but also have a greener content.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

How Planckton Data is building the sustainability label every industry will need

now streaming

There’s a reason “carbon footprint” became a buzzword. It sounds like something we should know. Something we should measure. Something that should be printed next to the calorie count on a label.

But unlike calories, a carbon footprint isn’t universal, standardized, or easy to calculate. In fact, for most companies—especially in energy and heavy industry—it’s still a black box.

That’s the problem Planckton Data is solving.

On this episode of the Energy Tech Startups Podcast, Planckton Data co-founders Robin Goswami and Sandeep Roy sit down to explain how they’re turning complex, inconsistent, and often incomplete emissions data into usable insight. Not for PR. Not for green washing. For real operational and regulatory decisions.

And they’re doing it in a way that turns sustainability from a compliance burden into a competitive advantage.

From calories to carbon: The label analogy that actually works

If you’ve ever picked up two snack bars and compared their calorie counts, you’ve made a decision based on transparency. Robin and Sandeep want that same kind of clarity for industrial products.

Whether it’s a shampoo bottle, a plastic feedstock, or a specialty chemical—there’s now consumer and regulatory pressure to know exactly how sustainable a product is. And to report it.

But that’s where the simplicity ends.

Because unlike food labels, carbon labels can’t be standardized across a single factory. They depend on where and how a product was made, what inputs were used, how far it traveled, and what method was used to calculate the data.

Even two otherwise identical chemicals—one sourced from a refinery in Texas and the other in Europe—can carry very different carbon footprints, depending on logistics, local emission factors, and energy sources.

Planckton’s solution is built to handle exactly this level of complexity.

AI that doesn’t just analyze

For most companies, supply chain emissions data is scattered, outdated, and full of gaps.

That’s where Planckton’s use of AI becomes transformative.

  • It standardizes data from multiple suppliers, geographies, and formats.
  • It uses probabilistic models to fill in the blanks when suppliers don’t provide details.
  • It applies industry-specific product category rules (PCRs) and aligns them with evolving global frameworks like ISO standards and GHG Protocol.
  • It helps companies model decarbonization pathways, not just calculate baselines.

This isn’t generative AI for show. It’s applied machine learning with a purpose: helping large industrial players move from reporting to real action.

And it’s not a side tool. For many of Planckton’s clients, it’s becoming the foundation of their sustainability strategy.

From boardrooms to smokestacks: Where the pressure is coming from

Planckton isn’t just chasing early adopters. They’re helping midstream and upstream industrial suppliers respond to pressure coming from two directions:

  1. Downstream consumer brands—especially in cosmetics, retail, and CPG—are demanding footprint data from every input supplier.
  2. Upstream regulations—especially in Europe—are introducing reporting requirements, carbon taxes, and supply chain disclosure laws.

The team gave a real-world example: a shampoo brand wants to differentiate based on lower emissions. That pressure flows up the value chain to the chemical suppliers. Who, in turn, must track data back to their own suppliers.

It’s a game of carbon traceability—and Planckton helps make it possible.

Why Planckton focused on chemicals first

With backgrounds at Infosys and McKinsey, Robin and Sandeep know how to navigate large-scale digital transformations. They also know that industry specificity matters—especially in sustainability.

So they chose to focus first on the chemicals sector—a space where:

  • Supply chains are complex and often opaque.
  • Product formulations are sensitive.
  • And pressure from cosmetics, packaging, and consumer brands is pushing for measurable, auditable impact data.

It’s a wedge into other verticals like energy, plastics, fertilizers, and industrial manufacturing—but one that’s already showing results.

Carbon accounting needs a financial system

What makes this conversation unique isn’t just the product. It’s the co-founders’ view of the ecosystem.

They see a world where sustainability reporting becomes as robust as financial reporting. Where every company knows its Scope 1, 2, and 3 emissions the way it knows revenue, gross margin, and EBITDA.

But that world doesn’t exist yet. The data infrastructure isn’t there. The standards are still in flux. And the tooling—until recently—was clunky, manual, and impossible to scale.

Planckton is building that infrastructure—starting with the industries that need it most.

Houston as a launchpad (not just a legacy hub)

Though Planckton has global ambitions, its roots in Houston matter.

The city’s legacy in energy and chemicals gives it a unique edge in understanding real-world industrial challenges. And the growing ecosystem around energy transition—investors, incubators, and founders—is helping companies like Planckton move fast.

“We thought we’d have to move to San Francisco,” Robin shares. “But the resources we needed were already here—just waiting to be activated.”

The future of sustainability is measurable—and monetizable

The takeaway from this episode is clear: measuring your carbon footprint isn’t just good PR—it’s increasingly tied to market access, regulatory approval, and bottom-line efficiency.

And the companies that embrace this shift now—using platforms like Planckton—won’t just stay compliant. They’ll gain a competitive edge.

Listen to the full conversation with Planckton Data on the Energy Tech Startups Podcast:

Hosted by Jason Ethier and Nada Ahmed, the Digital Wildcatters’ podcast, Energy Tech Startups, delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.


Gold H2 harvests clean hydrogen from depleted California reservoirs in first field trial

breakthrough trial

Houston climatech company Gold H2 completed its first field trial that demonstrates subsurface bio-stimulated hydrogen production, which leverages microbiology and existing infrastructure to produce clean hydrogen.

Gold H2 is a spinoff of another Houston biotech company, Cemvita.

“When we compare our tech to the rest of the stack, I think we blow the competition out of the water," Prabhdeep Singh Sekhon, CEO of Gold H2 Sekhon previously told Energy Capital.

The project represented the first-of-its-kind application of Gold H2’s proprietary biotechnology, which generates hydrogen from depleted oil reservoirs, eliminating the need for new drilling, electrolysis or energy-intensive surface facilities. The Woodlands-based ChampionX LLC served as the oilfield services provider, and the trial was conducted in an oilfield in California’s San Joaquin Basin.

According to the company, Gold H2’s technology could yield up to 250 billion kilograms of low-carbon hydrogen, which is estimated to provide enough clean power to Los Angeles for over 50 years and avoid roughly 1 billion metric tons of CO2 equivalent.

“This field trial is tangible proof. We’ve taken a climate liability and turned it into a scalable, low-cost hydrogen solution,” Sekhon said in a news release. “It’s a new blueprint for decarbonization, built for speed, affordability, and global impact.”

Highlights of the trial include:

  • First-ever demonstration of biologically stimulated hydrogen generation at commercial field scale with unprecedented results of 40 percent H2 in the gas stream.
  • Demonstrated how end-of-life oilfield liabilities can be repurposed into hydrogen-producing assets.
  • The trial achieved 400,000 ppm of hydrogen in produced gases, which, according to the company,y is an “unprecedented concentration for a huff-and-puff style operation and a strong indicator of just how robust the process can perform under real-world conditions.”
  • The field trial marked readiness for commercial deployment with targeted hydrogen production costs below $0.50/kg.

“This breakthrough isn’t just a step forward, it’s a leap toward climate impact at scale,” Jillian Evanko, CEO and president at Chart Industries Inc., Gold H2 investor and advisor, added in the release. “By turning depleted oil fields into clean hydrogen generators, Gold H2 has provided a roadmap to produce low-cost, low-carbon energy using the very infrastructure that powered the last century. This changes the game for how the world can decarbonize heavy industry, power grids, and economies, faster and more affordably than we ever thought possible.”

Rice University spinout lands $500K NSF grant to boost chip sustainability

cooler computing

HEXAspec, a spinout from Rice University's Liu Idea Lab for Innovation and Entrepreneurship, was recently awarded a $500,000 National Science Foundation Partnership for Innovation grant.

The team says it will use the funding to continue enhancing semiconductor chips’ thermal conductivity to boost computing power. According to a release from Rice, HEXAspec has developed breakthrough inorganic fillers that allow graphic processing units (GPUs) to use less water and electricity and generate less heat.

The technology has major implications for the future of computing with AI sustainably.

“With the huge scale of investment in new computing infrastructure, the problem of managing the heat produced by these GPUs and semiconductors has grown exponentially. We’re excited to use this award to further our material to meet the needs of existing and emerging industry partners and unlock a new era of computing,” HEXAspec co-founder Tianshu Zhai said in the release.

HEXAspec was founded by Zhai and Chen-Yang Lin, who both participated in the Rice Innovation Fellows program. A third co-founder, Jing Zhang, also worked as a postdoctoral researcher and a research scientist at Rice, according to HEXAspec's website.

The HEXASpec team won the Liu Idea Lab for Innovation and Entrepreneurship's H. Albert Napier Rice Launch Challenge in 2024. More recently, it also won this year's Energy Venture Day and Pitch Competition during CERAWeek in the TEX-E student track, taking home $25,000.

"The grant from the NSF is a game-changer, accelerating the path to market for this transformative technology," Kyle Judah, executive director of Lilie, added in the release.

---

This article originally ran on InnovationMap.