Planckton Data co-founders were recently featured on Energy Tech Startups Podcast. Courtesy photo

There’s a reason “carbon footprint” became a buzzword. It sounds like something we should know. Something we should measure. Something that should be printed next to the calorie count on a label.

But unlike calories, a carbon footprint isn’t universal, standardized, or easy to calculate. In fact, for most companies—especially in energy and heavy industry—it’s still a black box.

That’s the problem Planckton Data is solving.

On this episode of the Energy Tech Startups Podcast, Planckton Data co-founders Robin Goswami and Sandeep Roy sit down to explain how they’re turning complex, inconsistent, and often incomplete emissions data into usable insight. Not for PR. Not for green washing. For real operational and regulatory decisions.

And they’re doing it in a way that turns sustainability from a compliance burden into a competitive advantage.

From calories to carbon: The label analogy that actually works

If you’ve ever picked up two snack bars and compared their calorie counts, you’ve made a decision based on transparency. Robin and Sandeep want that same kind of clarity for industrial products.

Whether it’s a shampoo bottle, a plastic feedstock, or a specialty chemical—there’s now consumer and regulatory pressure to know exactly how sustainable a product is. And to report it.

But that’s where the simplicity ends.

Because unlike food labels, carbon labels can’t be standardized across a single factory. They depend on where and how a product was made, what inputs were used, how far it traveled, and what method was used to calculate the data.

Even two otherwise identical chemicals—one sourced from a refinery in Texas and the other in Europe—can carry very different carbon footprints, depending on logistics, local emission factors, and energy sources.

Planckton’s solution is built to handle exactly this level of complexity.

AI that doesn’t just analyze

For most companies, supply chain emissions data is scattered, outdated, and full of gaps.

That’s where Planckton’s use of AI becomes transformative.

  • It standardizes data from multiple suppliers, geographies, and formats.
  • It uses probabilistic models to fill in the blanks when suppliers don’t provide details.
  • It applies industry-specific product category rules (PCRs) and aligns them with evolving global frameworks like ISO standards and GHG Protocol.
  • It helps companies model decarbonization pathways, not just calculate baselines.

This isn’t generative AI for show. It’s applied machine learning with a purpose: helping large industrial players move from reporting to real action.

And it’s not a side tool. For many of Planckton’s clients, it’s becoming the foundation of their sustainability strategy.

From boardrooms to smokestacks: Where the pressure is coming from

Planckton isn’t just chasing early adopters. They’re helping midstream and upstream industrial suppliers respond to pressure coming from two directions:

  1. Downstream consumer brands—especially in cosmetics, retail, and CPG—are demanding footprint data from every input supplier.
  2. Upstream regulations—especially in Europe—are introducing reporting requirements, carbon taxes, and supply chain disclosure laws.

The team gave a real-world example: a shampoo brand wants to differentiate based on lower emissions. That pressure flows up the value chain to the chemical suppliers. Who, in turn, must track data back to their own suppliers.

It’s a game of carbon traceability—and Planckton helps make it possible.

Why Planckton focused on chemicals first

With backgrounds at Infosys and McKinsey, Robin and Sandeep know how to navigate large-scale digital transformations. They also know that industry specificity matters—especially in sustainability.

So they chose to focus first on the chemicals sector—a space where:

  • Supply chains are complex and often opaque.
  • Product formulations are sensitive.
  • And pressure from cosmetics, packaging, and consumer brands is pushing for measurable, auditable impact data.

It’s a wedge into other verticals like energy, plastics, fertilizers, and industrial manufacturing—but one that’s already showing results.

Carbon accounting needs a financial system

What makes this conversation unique isn’t just the product. It’s the co-founders’ view of the ecosystem.

They see a world where sustainability reporting becomes as robust as financial reporting. Where every company knows its Scope 1, 2, and 3 emissions the way it knows revenue, gross margin, and EBITDA.

But that world doesn’t exist yet. The data infrastructure isn’t there. The standards are still in flux. And the tooling—until recently—was clunky, manual, and impossible to scale.

Planckton is building that infrastructure—starting with the industries that need it most.

Houston as a launchpad (not just a legacy hub)

Though Planckton has global ambitions, its roots in Houston matter.

The city’s legacy in energy and chemicals gives it a unique edge in understanding real-world industrial challenges. And the growing ecosystem around energy transition—investors, incubators, and founders—is helping companies like Planckton move fast.

“We thought we’d have to move to San Francisco,” Robin shares. “But the resources we needed were already here—just waiting to be activated.”

The future of sustainability is measurable—and monetizable

The takeaway from this episode is clear: measuring your carbon footprint isn’t just good PR—it’s increasingly tied to market access, regulatory approval, and bottom-line efficiency.

And the companies that embrace this shift now—using platforms like Planckton—won’t just stay compliant. They’ll gain a competitive edge.

Listen to the full conversation with Planckton Data on the Energy Tech Startups Podcast:

Hosted by Jason Ethier and Nada Ahmed, the Digital Wildcatters’ podcast, Energy Tech Startups, delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.


Yao Huang is the guest on the latest episode of the Energy Tech Startups Podcast. Courtesy photo

Tech entrepreneur turned climate investor is on a mission to monetize carbon removal

now streaming

The climate conversation is evolving — fast. It’s no longer just about emissions targets and net-zero commitments. It’s about capital, infrastructure, and execution at industrial scale.

That’s exactly where Yao Huang operates. A seasoned tech entrepreneur turned climate investor, Yao brings sharp clarity to one of the biggest challenges in climate innovation: how do we fund and scale technologies that remove carbon without relying on goodwill or government subsidies?

In this episode of the Energy Tech Startups Podcast, Yao sits down with hosts Jason Ethier and Nada Ahmed for a wide-ranging conversation that redefines how we think about decarbonization. From algae-based photobioreactors that capture CO₂ at the smokestack, to financing models that mirror real estate and infrastructure—not venture capital—Yao lays out a case for why the climate fight will be won or lost on spreadsheets, not slogans.

Her message is as bold as it is practical: this isn’t about saving the planet for the sake of it. It’s about building profitable, resilient systems that scale. And Houston, with its industrial base and project finance expertise, is exactly the place to do it.

The 40-Gigaton Challenge—and a Pandemic Pivot

Yao’s entry into climate wasn’t part of a long-term plan. It was sparked by a quiet moment during the pandemic—and a book.

Reading How to Avoid a Climate Disaster by Bill Gates, she came to two uncomfortable realizations:

  1. The people in power don’t actually have this figured out, and
  2. She would be alive to suffer the consequences.

That insight jolted her out of the traditional tech world and into climate action. She studied at Stanford, surrounded herself with mentors, and began diving into early-stage climate deals. But she quickly realized that most of the solutions she was seeing were still years away from commercialization.

So she narrowed her focus: no R&D moonshots, no science experiments—just deployable solutions that could scale now.

Carbon Optimum: Where Algae Meets Infrastructure

That’s how she found Carbon Optimum, a company using algae photobioreactors to remove CO₂ directly from industrial emissions. Their approach is both elegant and economic:

  • Install algae reactors next to major emitters like coal and cement plants.
  • Feed the algae with flue gas, allowing it to absorb CO₂ in a controlled system.
  • Harvest the algae and convert it into valuable commodities like bio-oils, fertilizer, and food ingredients.

It’s a nature-based solution, enhanced by engineering.
One acre of tanks can capture emissions and generate profit—without subsidies.

“This is one of the few solutions I’ve seen that can scale profitably and quickly,” Yao says. “And we’re not inventing anything new—we’re just doing it better.”

The Real Problem? It’s Capital, Not Carbon

As an investor, Yao is blunt: most climate startups are misaligned with the capital markets.

They’re following a tech startup playbook—built for SaaS, not steel. But building climate infrastructure requires a completely different approach: project finance, blended capital, debt structures, carbon credit integration, and regulatory incentives.

“Climate tech is more like real estate or healthcare than software,” Yao explains. “You don’t raise six rounds of venture. You build a stack—grants, equity, debt, tax credits—and you structure your project like infrastructure.”

It’s not just theory. It’s exactly how Carbon Optimum is expanding—through partnerships, offtake agreements, and real-world deployments. And it’s why she believes many climate startups fail: they don’t speak the language of finance.

Houston’s Role in the Climate Capital Stack

For Yao, Houston isn’t just a backdrop—it’s a strategic asset.

The city’s deep bench of project finance professionals, commodity traders, lawyers, and infrastructure veterans makes it uniquely positioned to lead the deployment phase of climate solutions.

“We’ve been calling it the wrong thing,” she says. “This isn’t just about climate—it’s an energy transition. And Houston knows how to build energy infrastructure at scale.”

Still, she notes, the ecosystem needs to evolve. Less education, more execution. Fewer workshops, more closers.

“Houston could be the epicenter of this movement—if we activate the right people and get the right projects over the line.”

From Carbon Capture to Circular Economies

The potential applications of Carbon Optimum’s algae platform go beyond carbon capture. Because the output—algae biomass—can be converted into:

  • Renewable oil
  • High-efficiency fertilizers (critical in today’s geopolitically fragile supply chains)
  • Food ingredients rich in protein and nutrients
  • Even biochar, a highly stable form of carbon sequestration

It’s scalable, modular, and location-agnostic. In island nations, Yao notes, these systems can offer energy independence by turning waste CO₂ into local energy and fertilizer—without needing to import fuels or food.

“It’s not just emissions reduction. It’s economic sovereignty through circular systems.”

Doing, Not Just Talking

One of Yao’s key takeaways for founders? Don’t waste time. Climate startups don’t have the luxury of trial-and-error cycles stretched over years.

“Founders need to get real about what it takes to scale: talent, capital, storytelling, partnerships. If you’re not ready to do that, maybe you should be a CSO, not a CEO.”

She also points out that founders don’t need to hire everyone—they need to tap the right networks. And in cities like Houston, those networks exist—if you know how to motivate them.

“It takes a different kind of leadership. You’re not just raising money—you’re moving people.”

Why This Episode Matters

This conversation is for anyone who’s serious about scaling real solutions to the climate crisis. Whether you’re a founder navigating capital markets, an investor seeking return and impact, or a policymaker designing the frameworks — Yao Huang offers a grounded, urgent, and actionable perspective.

It’s not about hope. It’s about execution.

Listen to the full episode of the Energy Tech Startups Podcast with Yao Huang:


--
Hosted by
Jason Ethier and Nada Ahmed, the Digital Wildcatters’ podcast, Energy Tech Startups, delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.


Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH launches latest micro-credential program focused on energy risks

coming soon

UH Energy at the University of Houston will launch a new micro-credential program this fall focused on risks associated with today's changing energy landscape.

The new self-paced, hybrid program, known as Managing Non-Technical Risks in Energy, is geared towards energy professionals and those who aspire to work in the industry. Enrollment must be completed by Sept. 15 to participate.

According to UH, it will equip participants with "tools, strategies, and real-world insights needed to lead confidently" as they face pressure to meet increased energy demand while also operating under sustainable guidelines.

The program will be led by expert instructors, including:


  • Suryanarayanan Radhakrishnan, Managing Director of UH Energy
  • Amy Mifflin, Principal Consultant and Partner at Sustrio Inc.
  • Chris Angelides, Honorary Consul of The Republic of Cyprus to Texas, Managing Director at Ernst & Young LLP
  • Carolina Ortega, Vice President, Sustainability and Communications at Milestone Environmental Services
  • Krish (Ravi) Ravishankar, Senior Director ESG Analytics & Reporting, Sustainability, Worldwide Environmental Affairs at Oxy

Participants can earn up to three "badges" through the program. Each badge consists of two modules, which can be completed virtually and take about 10 hours to complete over four weeks.

Each module will also include one in-person engagement session that will last about two hours.

The three badges include:


  • Badge 1: Managing Environmental and Social Risks and Impacts
  • Badge 2: Frameworks, Standards, and Implementation
  • Badge 3: Advanced Applications

Badges can be earned individually or as a series of three, and participants must complete assessments to earn each badge.

Badge 1 Module 1 will start on Sept. 15, followed by Badge 1 Module 2 on Oct. 20. Find more information here.

Expert on powering Texas: The promise and challenges of renewable energy

Guest Column

Texas leads the nation in wind and solar energy, but that leadership is being tested as a surge in project cancellations raises new concerns about the future of renewables in the state.

While Texas clean energy has grown significantly in recent years, solar and wind often fall short of meeting peak electricity demand. As extreme weather, rising demand, and project cancellations strain the grid, Texas must confront the growing gap between renewable potential and real-time reliability.

Solar and Wind Energy

Solar generation in the Lone Star State has grown substantially over the past decade. The Texas solar industry is estimated to employ over 12,000 Texans and is contributing billions in local tax revenue and landowner income, and solar and storage are the largest sources of new energy on the Texas grid.

With a significant number of sunny days, Texas’ geography also enables it to be among the states with the greatest energy potential for solar power generation. Further moving to advance the use of solar energy generation, the 89th Texas legislature passed SB 1202 which accelerates the permitting process for home solar and energy storage installations. SB 1202 empowers homeowners to strengthen their own energy security and supports greater grid resilience across the state.

Texas has also led the United States in wind energy production for more than 17 years, with 239 wind-related projects and over 15,300 wind turbines, which is more than any other state. The economic impact of wind energy in Texas is substantial, with the industry contributing $1.7 billion a year to the state’s gross domestic product. With wind electric power generation jobs offering an average annual wage of $109,826, the growing sector provides lucrative employment opportunities.

However, solar and wind currently struggle to meet Texas’ peak electricity demand from 5 pm to 7 pm — a time when millions of residents return home, temperatures remain high and air conditioner use surges. Solar generation begins to decline just as demand ramps up, and wind production is often inconsistent during these hours. Without sufficient long-duration storage or dispatchable backup power, this mismatch between supply and demand presents a significant reliability risk — one that becomes especially urgent during heat waves and extreme weather events, as seen during ERCOT conservation alerts.

Geothermal Energy

Geothermal energy uses heat from beneath the Earth’s surface to provide reliable, low-emission power with minimal land use and no fuel transport. Though it currently supplies a small share of energy, Texas is emerging as a leader in its development, supported by state leaders, industry, and environmentalists. During the 89th legislative session, Texas passed HB 3240 to create a Geothermal Energy Production Policy Council, set to begin work on September 1, 2025.

In 2024, Sage Geosystems was selected to develop geothermal projects at the Naval Air Station in Corpus Christi, expanding its work with the Department of Defense. In partnership with the Environmental Security Technology Certification Program, Sage is using its proprietary Geopressured Geothermal Systems technology to evaluate the potential for geothermal to be a source of clean and consistent energy at the base.

One limitation of geothermal energy is location. Deep drilling is costly, and areas with high water tables, like some coastal regions, may not be viable.

Hydroelectric Energy

While hydropower plays a minor role in Texas’ energy mix, it is still an essential energy source. Its output depends on water availability, which can be affected by seasonal and long-term changes like droughts.

Texas has 26 hydropower plants with a total capacity of nearly 738 megawatts, serving about 2.9 million people as of 2019. Harris County holds 43% of all hydropower generation jobs in the state, and in 2021, hydroelectric power generation contributed $700 million to Texas’ gross domestic product.

Federal funding is helping expand hydropower in Texas. The Southwestern Power Administration has committed about $103 million to support infrastructure, including $32 million for upgrades to Central Texas’s Whitney Dam. The 2021 Inflation Reduction Act added $369 billion in tax credits for clean energy, supporting dam retrofits nationwide. In 2022, the Department of Energy launched over $28 million in new funding through the Infrastructure Law to help meet national clean energy goals by 2035 and carbon neutrality by 2050.

Tidal Energy

Driven by the moon and sun, tidal energy is predictable but limited to coastal areas with strong tides. Although Texas has modest tidal potential, research is ongoing to optimize it. Texas A&M University is developing a floating test platform for hybrid renewable systems, integrating tidal, wave, wind, and solar energy. In addition, St. Mary’s University in San Antonio is prototyping small-scale tidal turbines using 3D printing technology.

While commercial tidal power remains in the research phase, the state’s offshore capabilities, engineering talent, and growing university-led innovation could make it a player in hybrid marine renewable systems. Floating platforms that integrate wave, tide, solar, and wind offer a compelling vision for offshore power generation suited to Texas’ unique coastal conditions.

Biomass Energy

Biomass energy is the largest renewable source worldwide, providing 55% of renewables and over 6% of global energy. While reliable, it can be less efficient, sometimes using more energy to burn the organic matter than it produces, and demand may exceed supply.

In Texas, biomass is a nominal part of the state’s energy portfolio. However, substantial research is being conducted by Texas A&M University to attempt to convert algae and food waste into a cost-efficient source of biomass material. In addition, UK-based biomass and renewable energy company Drax opened its North American headquarters in Houston, which created more than 100 new jobs in Texas’ renewable energy industry.

It’s clear that renewable energy is playing an increasingly important role in shaping Texas’ energy future. But the road ahead demands a realistic view: while these sources can reduce emissions and diversify our generation mix, they do not yet solve for peak load reliability — especially during the critical 5 pm to 7 pm window when grid stress is highest.

Meeting that challenge will require not just investment in renewables, but also innovation in grid-scale storage, flexible generation, market reform and consumer programs. A diversified, resilient energy portfolio — one that includes renewables and reliable dispatchable sources — will be the key to ensuring that Texas remains powered, prepared and prosperous for generations to come.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.