Jupiter Power's Houston facility went online earlier this year. Photo courtesy of jupiterpower.io

Austin-based developer and operator of utility-scale battery energy storage systems Jupiter Power has announced the successful closing of a $225 million corporate credit facility.

The transaction strengthens Jupiter Power’s U.S. portfolio, which includes one of the nation’s largest energy storage development pipelines, totaling over 12,000 megawatts. Jupiter Power, which also has offices in Houston, began commercial operations with the launch of its 400-megawatt-hour battery facility, Callisto I, in central Houston in August of 2024.

"Securing this corporate credit facility highlights the market's recognition of Jupiter Power as a leader in advancing large-scale energy storage solutions, as evidenced by our 2,575 megawatt hours of battery energy storage systems already in operation or construction," Jupiter Power CFO Jesse Campbell says in a news release. “This funding enhances our ability to advance projects across our pipeline in markets where energy storage is needed most. We greatly appreciate the support of our banking partners in this transaction.”

The $225 million in total revolving credit facilities will include up to $175 million in letters of credit and $50 million in revolving loans. Leading on the lender side includes Barclays Bank PLC, HSBC Bank USA, and Sumitomo Mitsui Banking Corp.

“HSBC is proud to support Jupiter Power with their credit facility as they continue to expand and accelerate the development of their energy storage projects across the United States,” Paul Snow, head of renewables - Americas at HSBC adds. “HSBC’s inaugural facility with Jupiter Power not only reinforces our commitment to financing premiere clean energy projects, but complements our ambition to deliver a net zero global economy.”

The Houston project is the first in the area, and Jupiter Power's ninth to deliver energy storage to ERCOT, which brings its total ERCOT fleet to 1,375-megawatt-hour capacity.

Jupiter Power's Callisto I is up and running. Photo courtesy of jupiterpower.io

Houston clean energy storage facility goes online to power ERCOT grid

green light

A new battery energy storage facility in Houston is officially up and running to power the ERCOT grid with a supply of reliable, zero emissions power.

Jupiter Power announced the commercial operations launch of its 400-megawatt-hour battery facility, Callisto I, in central Houston on the site of the former HL&P H.O. Clarke fossil fuel power plant.

"Jupiter couldn't be prouder about bringing the Callisto I project online," Andy Bowman, CEO of Jupiter Power, says in a news release. "This project responds to lawmakers' calls to increase affordable and dispatchable new generation in an area where people need more power. Callisto I is the first energy storage project at this scale in the City of Houston and will help meet Houston's growing power needs while also increasing resiliency from extreme weather events."

The new project is Jupiter Power's ninth project to deliver energy storage to ERCOT — bringing its total ERCOT fleet to 1,375-megawatt-hour capacity — but its the first in the Houston area. The company is currently developing over 11,000 megawatts of projects across the country. Founded in 2017, Jupiter Power is headquartered in Austin and has offices in Houston and Chicago.

"The announcement of Jupiter Power's Callisto I Energy Storage project is significant and exciting for the region, as it's the first large-scale transmission-connected energy storage project in the City of Houston," Jane Stricker, senior vice president at the Greater Houston Partnership and executive director at the Houston Energy Transition Initiative, adds. "This critical project will help address peak power demand and is another great example of our region's leadership in scaling and deploying impactful solutions for an all the above energy future."

Among the company's financial backers is Houston-based EnCap Energy Transition, which invested in Jupiter Power via its Fund II.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University spinout lands $500K NSF grant to boost chip sustainability

cooler computing

HEXAspec, a spinout from Rice University's Liu Idea Lab for Innovation and Entrepreneurship, was recently awarded a $500,000 National Science Foundation Partnership for Innovation grant.

The team says it will use the funding to continue enhancing semiconductor chips’ thermal conductivity to boost computing power. According to a release from Rice, HEXAspec has developed breakthrough inorganic fillers that allow graphic processing units (GPUs) to use less water and electricity and generate less heat.

The technology has major implications for the future of computing with AI sustainably.

“With the huge scale of investment in new computing infrastructure, the problem of managing the heat produced by these GPUs and semiconductors has grown exponentially. We’re excited to use this award to further our material to meet the needs of existing and emerging industry partners and unlock a new era of computing,” HEXAspec co-founder Tianshu Zhai said in the release.

HEXAspec was founded by Zhai and Chen-Yang Lin, who both participated in the Rice Innovation Fellows program. A third co-founder, Jing Zhang, also worked as a postdoctoral researcher and a research scientist at Rice, according to HEXAspec's website.

The HEXASpec team won the Liu Idea Lab for Innovation and Entrepreneurship's H. Albert Napier Rice Launch Challenge in 2024. More recently, it also won this year's Energy Venture Day and Pitch Competition during CERAWeek in the TEX-E student track, taking home $25,000.

"The grant from the NSF is a game-changer, accelerating the path to market for this transformative technology," Kyle Judah, executive director of Lilie, added in the release.

---

This article originally ran on InnovationMap.

Rice research team's study keeps CO2-to-fuel devices running 50 times longer

new findings

In a new study published in the journal Science, a team of Rice University researchers shared findings on how acid bubbles can improve the stability of electrochemical devices that convert carbon dioxide into useful fuels and chemicals.

The team led by Rice associate professor Hoatian Wang addressed an issue in the performance and stability of CO2 reduction systems. The gas flow channels in the systems often clog due to salt buildup, reducing efficiency and causing the devices to fail prematurely after about 80 hours of operation.

“Salt precipitation blocks CO2 transport and floods the gas diffusion electrode, which leads to performance failure,” Wang said in a news release. “This typically happens within a few hundred hours, which is far from commercial viability.”

By using an acid-humidified CO2 technique, the team was able to extend the operational life of a CO2 reduction system more than 50-fold, demonstrating more than 4,500 hours of stable operation in a scaled-up reactor.

The Rice team made a simple swap with a significant impact. Instead of using water to humidify the CO2 gas input into the reactor, the team bubbled the gas through an acid solution such as hydrochloric, formic or acetic acid. This process made more soluble salt formations that did not crystallize or block the channels.

The process has major implications for an emerging green technology known as electrochemical CO2 reduction, or CO2RR, that transforms climate-warming CO2 into products like carbon monoxide, ethylene, or alcohols. The products can be further refined into fuels or feedstocks.

“Using the traditional method of water-humidified CO2 could lead to salt formation in the cathode gas flow channels,” Shaoyun Hao, postdoctoral research associate in chemical and biomolecular engineering at Rice and co-first author, explained in the news release. “We hypothesized — and confirmed — that acid vapor could dissolve the salt and convert the low solubility KHCO3 into salt with higher solubility, thus shifting the solubility balance just enough to avoid clogging without affecting catalyst performance.”

The Rice team believes the work can lead to more scalable CO2 electrolyzers, which is vital if the technology is to be deployed at industrial scales as part of carbon capture and utilization strategies. Since the approach itself is relatively simple, it could lead to a more cost-effective and efficient solution. It also worked well with multiple catalyst types, including zinc oxide, copper oxide and bismuth oxide, which are allo used to target different CO2RR products.

“Our method addresses a long-standing obstacle with a low-cost, easily implementable solution,” Ahmad Elgazzar, co-first author and graduate student in chemical and biomolecular engineering at Rice, added in the release. “It’s a step toward making carbon utilization technologies more commercially viable and more sustainable.”

A team led by Wang and in collaboration with researchers from the University of Houston also shared findings on salt precipitation buildup and CO2RR in a recent edition of the journal Nature Energy. Read more here.