Seven projects from Houston companies were granted more than $41 million in federal and non-federal funding through the Methane Emissions Reduction Program. Photo via Canva

The U.S. Department of Energy and the U.S. Environmental Protection Agency announced the selection of seven projects from Houston companies to receive funding through the Methane Emissions Reduction Program.

The projects are among 43 others nationwide, including 12 from Texas, that reduce, monitor, measure, and quantify methane emissions from the oil and gas sector. The DOE and EPA awarded $850 million in total through the program.

The Houston companies picked up $31.7 million in federal funding through the program in addition to more than $9.5 million in non-federal dollars.

“I’m excited about the opportunities these will create internally but even more so the creation of jobs and training opportunities for the communities in which we work,” Scott McCurdy, Encino Environmental Services CEO, said in a news release. His company received awards for two projects.

“These projects will allow us to further support and strengthen the U.S. Energy industry’s ability to deliver clean, reliable, and affordable energy globally,” he added.

The Houston-area awards included:

DaphneTech USA LLC

Total funding: $5.8 million (approximately $4.5 million in federal, $1.3 million in non-federal)

The award was granted for the company’s Daphne and Williams Methane Slip Abatement Plasma-Catalyst Scale-Up project. Daphne will study how its SlipPure technology, a novel exhaust gas cleaning system that abates methane and exhaust gas pollution from natural gas-fueled engines, can be economically viable across multiple engine types and operating conditions.

Baker Hughes Energy Transition LLC 

Total funding: $7.47 million (approximately $6 million in federal, $1.5 million in non-federal)

The award was granted for the company’s Advancing Low Cost CH4 Emissions Reduction from Flares through Large Scale Deployment of Retrofittable and Adaptive Technology project. The project aims to develop a scalable, integrated methane emissions reduction system for flares based on optical gas imaging and estimation algorithms.

Encino Environmental Services

Total funding: $15.17 million (approximately $11 million in federal, $4.17 million in non-federal)

The award was granted for two projects. The Advanced Methane Reduction System: Integrating Infrared and Visual Imaging to Assess Net Heating Value at the Combustion Zone and Determine Combustion Efficiency to Enhance Flaring Performance project aims to develop and deploy an advanced continuous emissions monitoring system. It’s Advancing Methane Emissions Reduction through Innovative Technology project will develop and deploy a technology using sensors and composite materials to address emissions originating in storage tanks.

Envana Software Solutions

Total funding: $5.26 million (approximately $4.2 million in federal, $1 million in non-federal)

The award was granted for the company’s Leak Detection and Reduction Software to Identify Methane Emissions and Trigger Mitigation at Oil and Gas Production Facilities Based on SCADA Data project. It aims to improve its Recon software for monitoring methane emissions and develop partnerships with local universities and organizations.

Capwell Services Inc.

Total funding: $4.19 million (approximately $3.3 million in federal, $837,000 in non-federal)

The award was granted for its Methane Emissions Abatement Technology for Low-Flow and Intermittent Emission Sources project. It aims to to deploy and field-test a methane abatement unit and improve air quality and health outcomes for communities near production facilities and establish field technician internships for local residents.

Blue Sky Measurements 

Total funding: $3.41 million (approximately $2.7 million in federal, $683,000 in non-federal)

The award was granted for its Field Validation of Novel Fixed Position Optical Sensor for Fugitive Methane Emission Detection Quantification and Location with Real-Time Notification for Rapid Mitigation project. It aims to field test an optical sensing technology at six well sites in the Permian Basin.

Southern Methodist University, The University of Texas at Austin, Texas A&M Engineering Experiment Station and Hyliion Inc. were other Texas-based organizations to earn awards. See the full list of projects here.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas energy startup closes $200M round to fund first factory in the state

fresh funding

Base Power, an Austin-based startup that provides battery-powered home energy services and just entered the Houston market, has raised $200 million in series B funding.

The money will help finance the construction of Base Power’s first factory in Texas. A site for the factory hasn’t been announced. The cash will also go toward the national expansion of Base Power’s services.

Andreessen Horowitz, Lightspeed Venture Partners and Valor Equity Partners co-led the round, with participation from existing investors such as Thrive Capital, Altimeter, Terrain, and Trust.

As part of the fundraising, Lee Fixel of Addition and Antonio Gracias of Valor Equity Partners are joining Base Power’s board of directors.

Last year, the startup landed $68 million in a series A funding round.

Base Power, founded in 2023, specializes in developing battery storage for energy that it provides to residential customers. Its partners include homebuilder Lennar and the Bandera Electric Cooperative, which supplies power to customers in seven Hill Country counties. Earlier this year it began serving the Houston-area territory serviced by CenterPoint Energy.

“Our rapid expansion has allowed us to power up thousands of Texans in just a few months, while driving their energy costs down and power reliability up,” Zach Dell, co-founder and CEO of Base Power, says in a news release. “With this investment, we will continue to innovate on new grid solutions, establish our domestic manufacturing capabilities, and accelerate adoption nationally.”

Dell’s father is Austin tech billionaire Michael Dell. He founded the company with Justin Lopas.

Houston cleantech company expands into China with hydrogen energy pilot

going global

Hydrogen-based clean energy technology company HNO International has announced its first foray into the Chinese market.

The company, which is building a state-of-the-art hydrogen production and refueling facility in Katy, has entered into an agreement with renewable energy company Zhuhai Topower New Energy Co., according to a release. This initiative includes a pilot deployment of HNOI’s Scalable Hydrogen Energy Platform, or SHEP, in China.

“Partnering with Zhuhai Topower represents a significant milestone in our mission to expand the global reach of our hydrogen production and refueling solutions,” Don Owens, Chairman and CEO of HNO International, said in the news release.

The collaboration plans to use HNO’s innovative SHEP technology to install hundreds of low-cost modular hydrogen production and refueling infrastructure projects, according to the company. HNO’s SHEP hydrogen energy system is known to require less than 3,000 square feet of space to operate while producing 5,000 kilograms of hydrogen per day.

Both companies plan to set a precedent for scalable and sustainable energy solutions in China.

Zhuhai Topower has investments totaling $340.63 million in new energy holdings for power generation, including a 100-megawatt wind power project and a 50-megawatt photovoltaic power generation project.

“This collaboration not only underscores the versatility of our SHEP technology, but also aligns with our commitment to supporting sustainable energy initiatives worldwide,” Owens added in the news release.

Rice University and UH labs team up to improve emerging carbon capture technique

new findings

A team of researchers led by professors from two Houston universities has discovered new methods that help stabilize an emerging technique known as carbon dioxide reduction reaction, or CO2RR, that is used for carbon capture and utilization processes.

The team led by Rice University’s Haotian Wang, associate professor in chemical and biomolecular engineering, and Xiaonan Shan, associate professor of electrical and computer engineering at University of Houston, published its findings in a recent edition of the journal Nature Energy.

CO2RR is an emerging carbon capture and utilization technique where electricity and chemical catalysts are used to convert carbon dioxide gas into carbon-containing compounds like alcohols, ethylene, formic acids or carbon monoxide, according to a news release from Rice. The result can be used as fuels, chemicals or as starting materials to produce other compounds.

The technology is used in commercial membrane electrode assembly (MEA) electrolyzers to convert carbon dioxide into valuable compounds, but the technology isn’t perfected. A significant challenge in CO2RR technology has been the accumulation of bicarbonate salt crystals on the backside of the cathode gas diffusion electrode and within the gas flow channels. The salt precipitates block the flow of carbon dioxide gas through the cathode chamber, which reduce the performance and can cause a failure of the electrolyzers.

The goal in the study was to understand why and how bicarbonate salts form during this reaction. The Rice and UH teams worked together using operando Raman spectroscopy, which is a technique that allows researchers to study the structure of materials and any precipitates that adhere to them while the device is functioning.

“By utilizing operando Raman spectroscopy and optical microscopy, we successfully tracked the movement of bicarbonate-containing droplets and identified their migration pattern,” Shan said in the release. “This provided us the information to develop an effective strategy to manage these droplets without interrupting system stability.”

Next, the team worked to prevent the salt crystals from forming. First, they tested lowering the concentration of cations, like sodium or potassium, in the electrolyte to slow down the salt formation. This method proved to be effective.

They also coated the cathode with parylene, a synthetic polymer that repels water, like Teflon, which also notably improved the stability of the electrolyzer and prevented salt accumulation.

“Inspired by the waxy surface of the lotus leaf which causes water droplets to bead up and roll off, carrying off any dirt particles with it and leaving the leaf’s surface clean, we wondered if coating the gas flow channel with a nonstick substance will prevent salt-laden droplets from staying on the surface of the electrodes for too long and, therefore, reduce salt buildup.” Wang said in the release.

According to Wang, these relatively simple discoveries can extend the operational lifespan of CO2RR systems from a few hundred hours to over 1,000 hours.

The findings also have major implications for commercial applications, Shan added.

“This advancement paves the way for longer-lasting and more reliable (CO2RR) systems, making the technology more practical for large-scale chemical manufacturing,” Shan said in the release. “The improvements we developed are crucial for transitioning CO2 electrolysis from laboratory setups to commercial applications for producing sustainable fuels and chemicals.”