The new Carbon Measures coalition will create a framework that eliminates double-counting of carbon pollution and attributes emissions to their sources. Photo via Getty Images.

Six companies with a large presence in the Houston area have joined a new coalition of companies pursuing a better way to track the carbon emissions of products they manufacture, purchase and finance.

Houston-area members of the Carbon Measures coalition are:

  • Spring-based ExxonMobil
  • Air Liquide, whose U.S. headquarters is in Houston
  • Mitsubishi Heavy Industries, whose U.S. headquarters is in Houston
  • Honeywell, whose Performance Materials and Technologies business is based in Houston.
  • BASF, whose global oilfield solutions business is based in Houston
  • Linde, whose Linde Engineering Americas business is based in Houston

Carbon Measures will create an accounting framework that eliminates double-counting of carbon pollution and attributes emissions to their sources, said Amy Brachio, the group’s CEO. The model is expected to take two years to develop, and between five and seven years to scale up, Bloomberg reported.

The coalition wants to create a system that will “unleash markets and competition,” unlock investments and speed up the pace of emissions reduction, said Brachio, former vice chair of sustainability at professional services firm EY.

“If you can’t measure it, you can’t manage it,” said Darren Woods, chairman and CEO of ExxonMobil. “The first step to reducing global emissions is to know where they’re coming from — and today, we don’t have an accurate system to do this.”

Other members of the coalition include BlackRock-owned Global Infrastructure Partners, Banco Satanader, EY and NextEra Energy.

“Transparent and consistent emissions accounting is not just a technical necessity — it’s a strategic imperative. It enables smarter decisions and accelerates real progress across industries and borders,” said Ken West, president and CEO of Honeywell Energy and Sustainability Solutions.

The U.S. Department of Energy funding is earmarked for the new HyVelocity Hub. Photo via Getty Images

Houston's hydrogen revolution gets up to $1.2B federal boost to power Gulf Coast’s clean energy future

HyVelocity funding

The emerging low-carbon hydrogen ecosystem in Houston and along the Texas Gulf Coast is getting as much as a $1.2 billion lift from the federal government.

The U.S. Department of Energy funding, announced November 20, is earmarked for the new HyVelocity Hub. The hub — backed by energy companies, schools, nonprofits, and other organizations — will serve the country’s biggest hydrogen-producing area. The region earns that status thanks to more than 1,000 miles of dedicated hydrogen pipelines and almost 50 hydrogen production plants.

“The HyVelocity Hub demonstrates the power of collaboration in catalyzing economic growth and creating value for communities as we build a regional hydrogen economy that delivers benefits to Gulf Coast communities,” says Paula Gant, president and CEO of Des Plaines, Illinois-based GTI Energy, which is administering the hub.

HyVelocity, which aims to become the largest hydrogen hub in the country, has already received about $22 million of the $1.2 billion in federal funding to kickstart the project.

Organizers of the hydrogen project include:

  • Arlington, Virginia-based AES Corp.
  • Air Liquide, whose U.S. headquarters is in Houston
  • Chevron, which is moving its headquarters to Houston
  • Spring-based ExxonMobil
  • Lake Mary, Florida-based Mitsubishi Power Americas
  • Denmark-based Ørsted
  • Center for Houston’s Future
  • Houston Advanced Research Center
  • University of Texas at Austin

The hub’s primary contractor is HyVelocity LLC. The company says the hub could reduce carbon dioxide emissions by up to seven million metric tons per year and create as many as 45,000 over the life of the project.

HyVelocity is looking at several locations in the Houston area and along the Gulf Coast for large-scale production of hydrogen. The process will rely on water from electrolysis along with natural gas from carbon capture and storage. To improve distribution and lower storage costs, the hub envisions creating a hydrogen pipeline system.

Clean hydrogen generated by the hub will help power fuel-cell electric trucks, factories, ammonia plants, refineries, petrochemical facilities, and marine fuel operations.

The deal will enable transportation of ExxonMobil’s low-carbon hydrogen through Air Liquide’s pipeline network. Photo via exxonmobil.com

ExxonMobil’s low-carbon hydrogen project in Baytown adds Air Liquide as partner

team work

Spring-based energy giant ExxonMobil has enlisted Air Liquide as a partner for what’s being billed as the world’s largest low-carbon hydrogen project.

The deal will enable transportation of ExxonMobil’s low-carbon hydrogen through Air Liquide’s pipeline network. Furthermore, Air Liquide will build and operate four units to supply 9,000 metric tons of oxygen and up to 6,500 metric tons of nitrogen each day for the ExxonMobil project.

Air Liquide’s U.S. headquarters is in Houston.

ExxonMobil’s hydrogen production facility is planned for the company’s 3,400-acre Baytown refining and petrochemical complex. The project is expected to produce 1 billion cubic feet of low-carbon hydrogen daily from natural gas and more than 1 million tons of low-carbon ammonia annually while capturing more than 98 percent of the associated carbon emissions.

“Momentum continues to build for the world’s largest low-carbon hydrogen project and the emerging hydrogen market,” Dan Ammann, president of ExxonMobil Low Carbon Solutions, says in a news release.

The hydrogen project is expected to come online in 2027 or 2028.

ExxonMobil says using hydrogen to fuel its olefins plant at Baytown could reduce sitewide carbon emissions by as much as 30 percent. Meanwhile, the carbon capture and storage (CSUS) component of the project would be capable of storing 10 million metric tons of carbon each year, the company says.

Houston's HyVelocity Hub has joined in on a joint letter with the other six H2Hubs asking for revised guidelines. Photo via Getty Images

Houston's clean hydrogen hub joins request to revise federal tax credit guidance

edits needed

The group of regional hubs tapped by the United States government to receive funding to develop clean hydrogen projects have banded together to request a revision of the U.S. Department of Treasury's proposed hydrogen production tax credit (45V) guidance.

Houston's HyVelocity Hub, which was selected to receive up to $1.2 billion from the government's initiative, has joined in on a joint letter with the other six H2Hubs asking for revised requirements. HyVelocity also submitted its own letter to the Treasury.

HyVelocity's letter asks for flexibility and certainty the implementation of the “three pillars” for electricity, which include temporality, incrementality, and deliverability.

"It is imperative that to enable the desired environmental, economic, and equity goals of the IRA, private investment in hydrogen production must advance at scale and at an accelerated pace. Hydrogen production project investments require stable market projections and assurance of regulatory stability to ensure the economics of the long-term projects. To support this investment environment, we recommend that projects be granted a 'grandfathered exemption' such that for the project's life, they can use the regulations in place at the time when construction begins," reads the letter from HyVelocity.

HyVelocity, representing the Gulf Coast region, plans to create up to 35,000 construction jobs and 10,000 permanent jobs across nine proposed core projects with a collective investment of more than $10 billion in private capital to bring low-carbon hydrogen to the market.

The Houston-area initiative is backed by industry partners AES Corporation, Air Liquide, Chevron, ExxonMobil, Mitsubishi Power Americas, Ørsted, and Sempra Infrastructure and The spearheaded by GTI Energy and other organizing participants, including the University of Texas at Austin, The Center for Houston’s Future, Houston Advanced Research Center, and around 90 other supporting partners from academia, industry, government, and beyond.

The project’s first phase is targeted to produce more than 1.1 million tonnes per annum of low-carbon ammonia by the end of 2027. Photo via Houston.org

4 energy companies join forces on low-carbon ammonia project on the Houston Ship Channel

team work

Four companies from all around the world have agreed to work on a large-scale, low-carbon ammonia production and export project on the Houston Ship Channel.

Tokyo-based INPEX Corporation, Paris-based Air Liquide Group, Oklahoma City-based LSB Industries Inc., and Houston-based Vopak Moda Houston LLC have agreed to collaborate on the project, which is expected to deliver its first phase by the end of 2027 with the production of more than 1.1 million tonnes per annum (MTPA) of low-carbon ammonia.

“As we approach the achievement of our net zero target by 2050, the unveiling of our low carbon ammonia project in Texas, USA, stands as a momentous testament to INPEX's strong commitment to environmental leadership," INPEX President and CEO Takayuki Ueda says in a news release. "This innovative endeavor marks a significant milestone to create a clean fuel supply chain for a sustainable future.

"By harnessing the power of cutting-edge technologies and collaborative partnerships with Air Liquide, LSB and Vopak Moda, we are accelerating the transition to a low-carbon world, while solidifying our position as a pioneer in energy transformation and a responsible global energy player,” he continues.

Earlier this year, the project completed a feasibility study. Each of the companies will collaborate in various capacities, according to the release, including: Air Liquide and INPEX partnering on low-carbon hydrogen production with their respective technologies; LSB and INPEX collaborating on low-carbon ammonia production, with LSB selecting the ammonia loop technology provider, the pre-FEED, and the engineering, procurement and construction of the facility and LSB overseeing day-to-day operations; INPEX and LSB would sell the low-carbon ammonia and finalize off-take agreements; and Vopak Moda, which currently operates ammonia storage and handling infrastructure, will maintain its ownership of the existing infrastructure and future storage built.

“This project is well aligned with our strategy to become a leader in the global energy transition through the production of low-carbon ammonia,” Mark Behrman, LSB Industries president and CEO, says in the statement. “As a long-standing, highly experienced nitrogen producer and developer of nitrogen production facilities, we are uniquely positioned to play a key role in a critical element of this project by overseeing the design, construction and operation of the ammonia loop."

KBR and Air Liquide are combining their efforts to advance the energy transition. Photo via airliquide.com

2 Houston energy companies team up for low-carbon ammonia initiative

howdy, partner

Two companies with large presences in Houston have partnered to provide low-carbon ammonia to customers.

Houston-based KBR (NYSE: KBR), an engineering services company, and Air Liquide, a have announced a large-scale low-carbon ammonia partnership that will offer KBR customers a more sustainable option through Autothermal Reforming (ATR) technology.

As far as the collaborative partnership goes, KBR brings its ammonia synthesis technology to the table while Air Liquide has significant experience with ATR for large scale syngas production applications.

"Our differentiated ammonia synthesis technology has been the preferred choice for decades, with complete solutions for blue and green ammonia and large-scale capacity ...," says Doug Kelly, KBR president of technology, in a news release. "The addition of ATR technology further complements our clean ammonia offerings as we work to advance technology solutions to decarbonize the world."

Michael J. Graff, executive vice president of Air Liquide Group, which has its United States headquarters in Houston, says in the release that the combined efforts will help move the sector on its its low-carbon transition. When paired with carbon capture, the new partnered solution will result in preventing 99 percent of carbon emissions, per the release.

"This further illustrates Air Liquide's commitment to sustainable development, supporting customers in industry and mobility to decarbonize their products and operations," he says. "This is a core element of our ADVANCE strategic plan, which inseparably links financial and extra financial performance."

According to the company, KBR holds about half of the market share of licensed capacity within ammonia technology, and has "has licensed, engineered, or constructed over 250 grassroot ammonia plants worldwide" since 1943.

In the future, Air Liquide and KBR have plans to contribute development of low-carbon hydrogen as a key enabler of the energy transition.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

What EPA’s carbon capture and storage permitting announcement means for Texas

The View From HETI

Earlier this month, Texas was granted authority by the federal government for permitting carbon capture and storage (CCS) projects. This move could help the U.S. cut emissions while staying competitive in the global energy game.

In June, the U.S. Environmental Protection Agency (EPA) proposed approving Texas’ request for permitting authority under the Safe Drinking Water Act (SDWA) for Class VI underground injection wells for carbon capture and storage (CCS) in the state under a process called “primacy.” The State of Texas already has permitting authority for other injection wells (Classes I-V). In November, the EPA announced final approval of Texas’ primacy request.

Why This Matters for Texas

Texas is the headquarters for virtually every segment of the energy industry. According to the U.S. Energy Information Administration, Texas is the top crude oil- and natural-gas producing state in the nation. The state has more crude oil refineries and refining capacity than any other state in the nation. Texas produces more electricity than any other state, and the demand for electricity will grow with the development of data centers and artificial intelligence (AI). Simply put, Texas is the backbone of the nation’s energy security and competitiveness. For the nation’s economic competitiveness, it is important that Texas continue to produce more energy with less emissions. CCS is widely regarded as necessary to continue to lower the emissions intensity of the U.S. industrial sector for critical products including power generation, refining, chemicals, steel, cement and other products that our country and world demand.

The Greater Houston Partnership’s Houston Energy Transition Initiative (HETI) has supported efforts to bring CCUS to a broader commercial scale since the initiative’s inception.

“Texas is uniquely positioned to deploy CCUS at scale, with world-class geology, a skilled workforce, and strong infrastructure. We applaud the EPA for granting Texas the authority to permit wells for CCUS, which we believe will result in safe and efficient permitting while advancing technologies that strengthen Texas’ leadership in the global energy market,” said Jane Stricker, Executive Director of HETI and Senior Vice President, Energy Transition at the Greater Houston Partnership.

What is Primacy, and Why is it Important?

Primacy grants permitting authority for Class VI wells for CCS to the Texas Railroad Commission instead of the EPA. Texas is required to follow the same strict standards the EPA uses. The EPA has reviewed Texas’ application and determined it meets those requirements.

Research suggests that Texas has strong geological formations for CO2 storage, a world-class, highly skilled workforce, and robust infrastructure primed for the deployment of CCS. However, federal permitting delays are stalling billions of dollars of private sector investment. There are currently 257 applications under review, nearly one-quarter of which are located in Texas, with some applications surpassing the EPA’s target review period of 24 months. This creates uncertainty for developers and investors and keeps thousands of potential jobs out of reach. By transferring permitting to the state, Texas will apply local resources to issue Class VI permits across the states in a timely manner.

Texas joins North Dakota, Wyoming, Louisiana, West Virginia and Arizona with the authority for regulating Class VI wells.

Is CCS safe?

A 2025 study by Texas A&M University reviewed operational history and academic literature on CCS in the United States. The study analyzed common concerns related to CCS efficacy and safety and found that CCS reduces pollutants including carbon dioxide, particulate matter, sulfur oxides and nitrogen oxides. The research found that the risks of CCS present a low probability of impacting human life and can be effectively managed through existing state and federal regulations and technical monitoring and safety protocols.

What’s Next?

The final rule granting Texas’ primacy will become effective 30 days after publication in the Federal Register. Once in effect, the Texas Railroad Commission will be responsible for permitting wells for carbon capture, use and storage and enforcing their safe operation.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Houston energy expert: How the U.S. can turn carbon into growth

Guets Column

For the past 40 years, climate policy has often felt like two steps forward, one step back. Regulations shift with politics, incentives get diluted, and long-term aspirations like net-zero by 2050 seem increasingly out of reach. Yet greenhouse gases continue to rise, and the challenges they pose are not going away.

This matters because the costs are real. Extreme weather is already straining U.S. power grids, damaging homes, and disrupting supply chains. Communities are spending more on recovery while businesses face rising risks to operations and assets. So, how can the U.S. prepare and respond?

The Baker Institute Center for Energy Studies (CES) points to two complementary strategies. First, invest in large-scale public adaptation to protect communities and infrastructure. Second, reframe carbon as a resource, not just a waste stream to be reduced.

Why Focusing on Emissions Alone Falls Short

Peter Hartley argues that decades of global efforts to curb emissions have done little to slow the rise of CO₂. International cooperation is difficult, the costs are felt immediately, and the technologies needed are often expensive. Emissions reduction has been the central policy tool for decades, and it has been neither sufficient nor effective.

One practical response is adaptation, which means preparing for climate impacts we can’t avoid. Some of these measures are private, taken by households or businesses to reduce their own risks, such as farmers shifting crop types, property owners installing fire-resistant materials, or families improving insulation. Others are public goods that require policy action. These include building stronger levees and flood defenses, reinforcing power grids, upgrading water systems, revising building codes, and planning for wildfire risks. Such efforts protect people today while reducing long-term costs, and they work regardless of the source of extreme weather. Adaptation also does not depend on global consensus; each country, state, or city can act in its own interest. Many of these measures even deliver benefits beyond weather resilience, such as stronger infrastructure and improved security against broader threats.

McKinsey research reinforces this logic. Without a rapid scale-up of climate adaptation, the U.S. will face serious socioeconomic risks. These include damage to infrastructure and property from storms, floods, and heat waves, as well as greater stress on vulnerable populations and disrupted supply chains.

Making Carbon Work for Us

While adaptation addresses immediate risks, Ken Medlock points to a longer-term opportunity: turning carbon into value.

Carbon can serve as a building block for advanced materials in construction, transportation, power transmission, and agriculture. Biochar to improve soils, carbon composites for stronger and lighter products, and next-generation fuels are all examples. As Ken points out, carbon-to-value strategies can extend into construction and infrastructure. Beyond creating new markets, carbon conversion could deliver lighter and more resilient materials, helping the U.S. build infrastructure that is stronger, longer-lasting, and better able to withstand climate stress.

A carbon-to-value economy can help the U.S. strengthen its manufacturing base and position itself as a global supplier of advanced materials.

These solutions are not yet economic at scale, but smart policies can change that. Expanding the 45Q tax credit to cover carbon use in materials, funding research at DOE labs and universities, and supporting early markets would help create the conditions for growth.

Conclusion

Instead of choosing between “doing nothing” and “net zero at any cost,” we need a third approach that invests in both climate resilience and carbon conversion.

Public adaptation strengthens and improves the infrastructure we rely on every day, including levees, power grids, water systems, and building standards that protect communities from climate shocks. Carbon-to-value strategies can complement these efforts by creating lighter, more resilient carbon-based infrastructure.

CES suggests this combination is a pragmatic way forward. As Peter emphasizes, adaptation works because it is in each nation’s self-interest. And as Ken reminds us, “The U.S. has a comparative advantage in carbon. Leveraging it to its fullest extent puts the U.S. in a position of strength now and well into the future.”

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

UH launches new series on AI’s impact on the energy sector

where to be

The University of Houston's Energy Transition Institute has launched a new Energy in Action Seminar Series that will feature talks focused on the intersection of the energy industry and digitization trends, such as AI.

The first event in the series took place earlier this month, featuring Raiford Smith, global market lead for power & energy for Google Cloud, who presented "AI, Energy, and Data Centers." The talk discussed the benefits of widespread AI adoption for growth in traditional and low-carbon energy resources.

Future events include:

“Through this timely and informative seminar series, ETI will bring together energy professionals, researchers, students, and anyone working in or around digital innovation in energy," Debalina Sengupta, chief operating officer of ETI, said in a news release. "We encourage industry members and students to register now and reap the benefits of participating in both the seminar and the reception, which presents a fantastic opportunity to stay ahead of industry developments and build a strong network in the Greater Houston energy ecosystem.”

The series is slated to continue throughout 2026. Each presentation is followed by a one-hour networking reception. Register for the next event here.