Jeremy Pitts of Activate joins the Houston Energy Transition Initiative for a Q&A. Photo via LinkedIn

Founded in 2015, Activate Global Inc. is a 501(c)3 nonprofit organization that partners with US-based funders and research institutions to support scientists at the outset of their entrepreneurial journey by providing personalized expertise, tools, and resources that may otherwise be inaccessible. The organization recently launched its fifth community in Houston, and just closed the application window for the 2024 Activate Fellowship Cohort.

We recently connected with energy industry veteran and Activate Houston Managing Director Jeremy Pitts to learn more about how Activate is empowering scientists and engineers as they pave the way to a low-carbon future.

HETI: Activate was founded in 2015 and has established fellowship programs in Silicon Valley, Boston, New York, and a remote Anywhere Community. Why was Houston the next logical choice for an Activate Community?   

Jeremy Pitts: There is no doubt that Houston is going to be a major player in the energy transition, so it’s a logical place for Activate to be as we do our part to help bring ground-breaking technology out of the lab and deploy it to solve the world’s biggest challenges.

Houston is already the best place to scale a company working on the types of hard tech solutions that Activate focuses on. Houston has the talent, capital, and resources to build and deploy things at the scale needed to have a global impact. There is a good chance that many of our current Activate companies and alumni will end up in Houston as they pursue their scale-up plans. Activate alum Tim Latimer and Fervo Energy are great examples of this.

Houston is also an interesting fit for Activate as we believe we can fill a gap in the current ecosystem by providing support for entrepreneurs at the earliest stages of their journey. By providing funding and support, we can keep those entrepreneurs in Houston as opposed to moving to the coasts. We are hopeful that not only can we directly support a small number of the most promising entrepreneurs, but we can indirectly support many more by creating an ecosystem where early-stage capital starts to find its way to Houston to support these revolutionary and impactful technologies.

HETI: Activate Communities work closely with climate tech programs at leading colleges and universities, including UC Berkeley, U Mass Boston, and Columbia University. What can you tell us about Activate Houston’s plans for collaboration with area colleges and universities?

JP: Activate’s goal is to be as inclusive as possible. One of our main goals is to find fellows who we can have as big of an impact on as possible, potentially being the difference between whether they are successful or not. To that end, we plan to partner and engage with all of the research institutions across Houston and the surrounding areas. In just our first few months of being on the ground in Houston and recruiting for our first cohort, we have already engaged with Rice, UH, Prairie View A&M, TSU, Texas A&M, UT, and the Texas Medical Center. We have also begun outreach and preliminary conversations with institutions outside of the Houston area, like UT Dallas, SMU, Baylor, UTEP, etc. Our goal is to find the most promising entrepreneurs and the most impactful technologies that we can help and support, regardless of where they come from.

We will also be looking to engage with some of these institutions to make resources available to our fellows to support the research they are doing once in the Activate program. These conversations are in the early stages, but the facilities at UH Technology Bridge and TMC’s Innovation Factory are great examples of how the Houston ecosystem can support our fellows.

HETI: How do fellowships like Activate differ from traditional accelerator programs and why are they such an important component of the energy transition?

JP: Accelerators in general are a great resource for entrepreneurs to quickly learn the fundamentals around building a company and gain access to a network of investors, mentors, and partners that they would have trouble accessing on their own.

While Activate has a lot of overlap with accelerators in terms of what we provide, we classify ourselves as a fellowship and not an accelerator. The reasons for this primarily lie in the fact that we are a non-profit. This allows us to do a few things different from traditional accelerators. First, our program does not charge any fees or equity. Because our success is not tied to the financial outcomes of the companies, we are able to take much bigger risks in terms of the technology we support and we are also able to take a fellow first approach, as sometimes the best outcome for the fellow as a person is not the best financial outcome for the company. Second, we are much more patient, offering a full two years of support for our fellows and continuing to support our alumni community after they have left the program.

Activate’s unique fellowship program can play an essential role because many of the technologies and breakthroughs necessary to solve the world’s biggest challenges are really hard. It can take a long time to develop these technologies and often they are too risky and unproven at the early stages to be able to attract the capital they need to turn the technology into a commercial solution. Activate can support these hard technologies and provide a two-year safety net for our fellows as they work through those early challenges and progress their solution to a point that the private markets will support the business coming out of our program. We have been quite successful with this approach thus far, as the 145 companies we have created have raised nearly $1.4B in follow-on funding, representing a 23X multiplier on the funds Activate has directly deployed to support the fellows.

HETI: You’re the co-founder of Greentown Labs, now the nation’s biggest climate tech incubator. How does that experience help in your new role as MD at Activate Houston?

JP: The biggest takeaway for me from my time building Greentown is the power of community. Early-stage deep tech founders face monumental challenges. Having a community of like-minded individuals nearby who are facing their own similar challenges and serve as both a support network and a sounding board to help work through those challenges can be the difference between success and failure. I hope to leverage those learnings to really focus on Activate Houston being an incredibly strong community where the founders can lean on each other, and me, for the support they need.

In addition, Greentown also serves as a gathering place for bringing the larger climate community together, which is so vital in pushing forward the energy transition. In the early days of Greentown, those events happened on an almost ad hoc basis, as there wasn’t previously a place for people interested in climate to gather. Greentown has changed a lot over the years – the facilities are quite a bit nicer than where we started – but it has done an amazing job continuing to fill that role as the center of the climate ecosystem and bringing together a community of like-minded individuals. Anyone who attended the recent Greentown Climatetech Summit and experienced the standing-room-only crowds of passionate people can attest to that. Certainly, Greentown already fills that role for Houston and does it well, but my experience with the power of community will lead me to lean into Houston’s climate community and encourage our fellows to do the same, to be active members in strengthening the entire climate and innovation ecosystem in Houston. All boats rise together in the rising sea that is Houston’s climate and innovation ecosystem.

HETI: What are you most looking forward to with the upcoming launch of Houston’s 2024 Cohort?

JP: I’m looking forward to getting started – welcoming our first cohort into Houston and showing the rest of the country that Houston can hold its own when it comes to hard tech and world-changing innovation.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

What EPA’s carbon capture and storage permitting announcement means for Texas

The View From HETI

Earlier this month, Texas was granted authority by the federal government for permitting carbon capture and storage (CCS) projects. This move could help the U.S. cut emissions while staying competitive in the global energy game.

In June, the U.S. Environmental Protection Agency (EPA) proposed approving Texas’ request for permitting authority under the Safe Drinking Water Act (SDWA) for Class VI underground injection wells for carbon capture and storage (CCS) in the state under a process called “primacy.” The State of Texas already has permitting authority for other injection wells (Classes I-V). In November, the EPA announced final approval of Texas’ primacy request.

Why This Matters for Texas

Texas is the headquarters for virtually every segment of the energy industry. According to the U.S. Energy Information Administration, Texas is the top crude oil- and natural-gas producing state in the nation. The state has more crude oil refineries and refining capacity than any other state in the nation. Texas produces more electricity than any other state, and the demand for electricity will grow with the development of data centers and artificial intelligence (AI). Simply put, Texas is the backbone of the nation’s energy security and competitiveness. For the nation’s economic competitiveness, it is important that Texas continue to produce more energy with less emissions. CCS is widely regarded as necessary to continue to lower the emissions intensity of the U.S. industrial sector for critical products including power generation, refining, chemicals, steel, cement and other products that our country and world demand.

The Greater Houston Partnership’s Houston Energy Transition Initiative (HETI) has supported efforts to bring CCUS to a broader commercial scale since the initiative’s inception.

“Texas is uniquely positioned to deploy CCUS at scale, with world-class geology, a skilled workforce, and strong infrastructure. We applaud the EPA for granting Texas the authority to permit wells for CCUS, which we believe will result in safe and efficient permitting while advancing technologies that strengthen Texas’ leadership in the global energy market,” said Jane Stricker, Executive Director of HETI and Senior Vice President, Energy Transition at the Greater Houston Partnership.

What is Primacy, and Why is it Important?

Primacy grants permitting authority for Class VI wells for CCS to the Texas Railroad Commission instead of the EPA. Texas is required to follow the same strict standards the EPA uses. The EPA has reviewed Texas’ application and determined it meets those requirements.

Research suggests that Texas has strong geological formations for CO2 storage, a world-class, highly skilled workforce, and robust infrastructure primed for the deployment of CCS. However, federal permitting delays are stalling billions of dollars of private sector investment. There are currently 257 applications under review, nearly one-quarter of which are located in Texas, with some applications surpassing the EPA’s target review period of 24 months. This creates uncertainty for developers and investors and keeps thousands of potential jobs out of reach. By transferring permitting to the state, Texas will apply local resources to issue Class VI permits across the states in a timely manner.

Texas joins North Dakota, Wyoming, Louisiana, West Virginia and Arizona with the authority for regulating Class VI wells.

Is CCS safe?

A 2025 study by Texas A&M University reviewed operational history and academic literature on CCS in the United States. The study analyzed common concerns related to CCS efficacy and safety and found that CCS reduces pollutants including carbon dioxide, particulate matter, sulfur oxides and nitrogen oxides. The research found that the risks of CCS present a low probability of impacting human life and can be effectively managed through existing state and federal regulations and technical monitoring and safety protocols.

What’s Next?

The final rule granting Texas’ primacy will become effective 30 days after publication in the Federal Register. Once in effect, the Texas Railroad Commission will be responsible for permitting wells for carbon capture, use and storage and enforcing their safe operation.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Houston energy expert: How the U.S. can turn carbon into growth

Guets Column

For the past 40 years, climate policy has often felt like two steps forward, one step back. Regulations shift with politics, incentives get diluted, and long-term aspirations like net-zero by 2050 seem increasingly out of reach. Yet greenhouse gases continue to rise, and the challenges they pose are not going away.

This matters because the costs are real. Extreme weather is already straining U.S. power grids, damaging homes, and disrupting supply chains. Communities are spending more on recovery while businesses face rising risks to operations and assets. So, how can the U.S. prepare and respond?

The Baker Institute Center for Energy Studies (CES) points to two complementary strategies. First, invest in large-scale public adaptation to protect communities and infrastructure. Second, reframe carbon as a resource, not just a waste stream to be reduced.

Why Focusing on Emissions Alone Falls Short

Peter Hartley argues that decades of global efforts to curb emissions have done little to slow the rise of CO₂. International cooperation is difficult, the costs are felt immediately, and the technologies needed are often expensive. Emissions reduction has been the central policy tool for decades, and it has been neither sufficient nor effective.

One practical response is adaptation, which means preparing for climate impacts we can’t avoid. Some of these measures are private, taken by households or businesses to reduce their own risks, such as farmers shifting crop types, property owners installing fire-resistant materials, or families improving insulation. Others are public goods that require policy action. These include building stronger levees and flood defenses, reinforcing power grids, upgrading water systems, revising building codes, and planning for wildfire risks. Such efforts protect people today while reducing long-term costs, and they work regardless of the source of extreme weather. Adaptation also does not depend on global consensus; each country, state, or city can act in its own interest. Many of these measures even deliver benefits beyond weather resilience, such as stronger infrastructure and improved security against broader threats.

McKinsey research reinforces this logic. Without a rapid scale-up of climate adaptation, the U.S. will face serious socioeconomic risks. These include damage to infrastructure and property from storms, floods, and heat waves, as well as greater stress on vulnerable populations and disrupted supply chains.

Making Carbon Work for Us

While adaptation addresses immediate risks, Ken Medlock points to a longer-term opportunity: turning carbon into value.

Carbon can serve as a building block for advanced materials in construction, transportation, power transmission, and agriculture. Biochar to improve soils, carbon composites for stronger and lighter products, and next-generation fuels are all examples. As Ken points out, carbon-to-value strategies can extend into construction and infrastructure. Beyond creating new markets, carbon conversion could deliver lighter and more resilient materials, helping the U.S. build infrastructure that is stronger, longer-lasting, and better able to withstand climate stress.

A carbon-to-value economy can help the U.S. strengthen its manufacturing base and position itself as a global supplier of advanced materials.

These solutions are not yet economic at scale, but smart policies can change that. Expanding the 45Q tax credit to cover carbon use in materials, funding research at DOE labs and universities, and supporting early markets would help create the conditions for growth.

Conclusion

Instead of choosing between “doing nothing” and “net zero at any cost,” we need a third approach that invests in both climate resilience and carbon conversion.

Public adaptation strengthens and improves the infrastructure we rely on every day, including levees, power grids, water systems, and building standards that protect communities from climate shocks. Carbon-to-value strategies can complement these efforts by creating lighter, more resilient carbon-based infrastructure.

CES suggests this combination is a pragmatic way forward. As Peter emphasizes, adaptation works because it is in each nation’s self-interest. And as Ken reminds us, “The U.S. has a comparative advantage in carbon. Leveraging it to its fullest extent puts the U.S. in a position of strength now and well into the future.”

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

UH launches new series on AI’s impact on the energy sector

where to be

The University of Houston's Energy Transition Institute has launched a new Energy in Action Seminar Series that will feature talks focused on the intersection of the energy industry and digitization trends, such as AI.

The first event in the series took place earlier this month, featuring Raiford Smith, global market lead for power & energy for Google Cloud, who presented "AI, Energy, and Data Centers." The talk discussed the benefits of widespread AI adoption for growth in traditional and low-carbon energy resources.

Future events include:

“Through this timely and informative seminar series, ETI will bring together energy professionals, researchers, students, and anyone working in or around digital innovation in energy," Debalina Sengupta, chief operating officer of ETI, said in a news release. "We encourage industry members and students to register now and reap the benefits of participating in both the seminar and the reception, which presents a fantastic opportunity to stay ahead of industry developments and build a strong network in the Greater Houston energy ecosystem.”

The series is slated to continue throughout 2026. Each presentation is followed by a one-hour networking reception. Register for the next event here.